Neelon Brian, Gelfand Alan E, Miranda Marie Lynn
Duke University, Durham, USA.
University of Michigan, Ann Arbor, USA.
J R Stat Soc Ser C Appl Stat. 2014 Nov;63(5):737-761. doi: 10.1111/rssc.12061.
Researchers in the health and social sciences often wish to examine joint spatial patterns for two or more related outcomes. Examples include infant birth weight and gestational length, psychosocial and behavioral indices, and educational test scores from different cognitive domains. We propose a multivariate spatial mixture model for the joint analysis of continuous individual-level outcomes that are referenced to areal units. The responses are modeled as a finite mixture of multivariate normals, which accommodates a wide range of marginal response distributions and allows investigators to examine covariate effects within subpopulations of interest. The model has a hierarchical structure built at the individual level (i.e., individuals are nested within areal units), and thus incorporates both individual- and areal-level predictors as well as spatial random effects for each mixture component. Conditional autoregressive (CAR) priors on the random effects provide spatial smoothing and allow the shape of the multivariate distribution to vary flexibly across geographic regions. We adopt a Bayesian modeling approach and develop an efficient Markov chain Monte Carlo model fitting algorithm that relies primarily on closed-form full conditionals. We use the model to explore geographic patterns in end-of-grade math and reading test scores among school-age children in North Carolina.
健康与社会科学领域的研究人员常常希望研究两个或更多相关结果的联合空间模式。例如包括婴儿出生体重和孕期长度、心理社会与行为指标,以及来自不同认知领域的教育测试分数。我们提出一种多变量空间混合模型,用于对以区域单元为参照的连续个体层面结果进行联合分析。响应被建模为多变量正态分布的有限混合,这适应了广泛的边际响应分布,并允许研究人员在感兴趣的亚群体中检验协变量效应。该模型在个体层面构建了一个层次结构(即个体嵌套在区域单元内),因此纳入了个体和区域层面的预测变量以及每个混合成分的空间随机效应。对随机效应的条件自回归(CAR)先验提供了空间平滑,并允许多变量分布的形状在不同地理区域灵活变化。我们采用贝叶斯建模方法,并开发了一种高效的马尔可夫链蒙特卡罗模型拟合算法,该算法主要依赖于封闭形式的完全条件分布。我们使用该模型探索北卡罗来纳州学龄儿童年级末数学和阅读测试分数的地理模式。