Suppr超能文献

强度标准化简化了脑部磁共振图像分割。

Intensity Standardization Simplifies Brain MR Image Segmentation.

作者信息

Zhuge Ying, Udupa Jayaram K

机构信息

Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Comput Vis Image Underst. 2009 Oct;113(10):1095-1103. doi: 10.1016/j.cviu.2009.06.003.

Abstract

Typically, brain MR images present significant intensity variation across patients and scanners. Consequently, training a classifier on a set of images and using it subsequently for brain segmentation may yield poor results. Adaptive iterative methods usually need to be employed to account for the variations of the particular scan. These methods are complicated, difficult to implement and often involve significant computational costs. In this paper, a simple, non-iterative method is proposed for brain MR image segmentation. Two preprocessing techniques, namely intensity inhomogeneity correction, and more importantly MR image intensity standardization, used prior to segmentation, play a vital role in making the MR image intensities have a tissue-specific numeric meaning, which leads us to a very simple brain tissue segmentation strategy.Vectorial scale-based fuzzy connectedness and certain morphological operations are utilized first to generate the brain intracranial mask. The fuzzy membership value of each voxel within the intracranial mask for each brain tissue is then estimated. Finally, a maximum likelihood criterion with spatial constraints taken into account is utilized in classifying all voxels in the intracranial mask into different brain tissue groups. A set of inhomogeneity corrected and intensity standardized images is utilized as a training data set. We introduce two methods to estimate fuzzy membership values. In the first method, called SMG (for simple membership based on a gaussian model), the fuzzy membership value is estimated by fitting a multivariate Gaussian model to the intensity distribution of each brain tissue whose mean intensity vector and covariance matrix are estimated and fixed from the training data sets. The second method, called SMH (for simple membership based on a histogram), estimates fuzzy membership value directly via the intensity distribution of each brain tissue obtained from the training data sets. We present several studies to evaluate the performance of these two methods based on 10 clinical MR images of normal subjects and 10 clinical MR images of Multiple Sclerosis (MS) patients. A quantitative comparison indicates that both methods have overall better accuracy than the k-nearest neighbors (kNN) method, and have much better efficiency than the Finite Mixture (FM) model based Expectation-Maximization (EM) method. Accuracy is similar for our methods and EM method for the normal subject data sets, but much better for our methods for the patient data sets.

摘要

通常情况下,脑部磁共振成像(MR)在不同患者和扫描仪之间呈现出显著的强度变化。因此,在一组图像上训练分类器并随后将其用于脑部分割可能会产生较差的结果。通常需要采用自适应迭代方法来考虑特定扫描的变化。这些方法复杂、难以实现且通常涉及大量计算成本。在本文中,提出了一种简单的非迭代方法用于脑部MR图像分割。两种预处理技术,即强度不均匀性校正,更重要的是在分割之前使用的MR图像强度标准化,在使MR图像强度具有组织特定的数值意义方面起着至关重要的作用,这使我们得到了一种非常简单的脑组织分割策略。首先利用基于矢量尺度的模糊连通性和某些形态学操作来生成脑颅内掩码。然后估计颅内掩码内每个体素对于每个脑组织的模糊隶属度值。最后,利用考虑空间约束的最大似然准则将颅内掩码中的所有体素分类到不同的脑组织组中。一组经过不均匀性校正和强度标准化的图像被用作训练数据集。我们介绍了两种估计模糊隶属度值的方法。在第一种方法中,称为SMG(基于高斯模型的简单隶属度),通过将多元高斯模型拟合到每个脑组织的强度分布来估计模糊隶属度值,其平均强度向量和协方差矩阵是根据训练数据集估计并固定的。第二种方法,称为SMH(基于直方图的简单隶属度),直接通过从训练数据集中获得的每个脑组织的强度分布来估计模糊隶属度值。我们基于10名正常受试者的临床MR图像和10名多发性硬化症(MS)患者的临床MR图像进行了多项研究来评估这两种方法的性能。定量比较表明,这两种方法总体上比k近邻(kNN)方法具有更高的准确性,并且比基于有限混合(FM)模型的期望最大化(EM)方法具有更高的效率。对于正常受试者数据集,我们的方法和EM方法的准确性相似,但对于患者数据集,我们的方法要好得多。

相似文献

1
Intensity Standardization Simplifies Brain MR Image Segmentation.
Comput Vis Image Underst. 2009 Oct;113(10):1095-1103. doi: 10.1016/j.cviu.2009.06.003.
2
Robust generative asymmetric GMM for brain MR image segmentation.
Comput Methods Programs Biomed. 2017 Nov;151:123-138. doi: 10.1016/j.cmpb.2017.08.017. Epub 2017 Aug 24.
4
Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images.
J Med Syst. 2017 Jan;41(1):15. doi: 10.1007/s10916-016-0662-7. Epub 2016 Dec 13.
6
A multiscale and multiblock fuzzy C-means classification method for brain MR images.
Med Phys. 2011 Jun;38(6):2879-91. doi: 10.1118/1.3584199.
7
Fuzzy local Gaussian mixture model for brain MR image segmentation.
IEEE Trans Inf Technol Biomed. 2012 May;16(3):339-47. doi: 10.1109/TITB.2012.2185852. Epub 2012 Jan 24.
9
Enhancing interdisciplinary image segmentation through a Gaussian-based modified local consensus spatial fuzzy approach.
Comput Biol Med. 2025 May;190:110053. doi: 10.1016/j.compbiomed.2025.110053. Epub 2025 Mar 22.
10
Rough Sets and Stomped Normal Distribution for Simultaneous Segmentation and Bias Field Correction in Brain MR Images.
IEEE Trans Image Process. 2015 Dec;24(12):5764-76. doi: 10.1109/TIP.2015.2488900. Epub 2015 Oct 8.

引用本文的文献

1
Post-acquisition standardization of positron emission tomography images.
Front Nucl Med. 2023;3. doi: 10.3389/fnume.2023.1210931. Epub 2023 Sep 11.
2
A Contrast Augmentation Approach to Improve Multi-Scanner Generalization in MRI.
Front Neurosci. 2021 Aug 31;15:708196. doi: 10.3389/fnins.2021.708196. eCollection 2021.
3
Automated glioma grading on conventional MRI images using deep convolutional neural networks.
Med Phys. 2020 Jul;47(7):3044-3053. doi: 10.1002/mp.14168. Epub 2020 May 11.
4
Transfer learning by feature-space transformation: A method for Hippocampus segmentation across scanners.
Neuroimage Clin. 2018 Aug 14;20:466-475. doi: 10.1016/j.nicl.2018.08.005. eCollection 2018.
5
Brain tumor segmentation using holistically nested neural networks in MRI images.
Med Phys. 2017 Oct;44(10):5234-5243. doi: 10.1002/mp.12481. Epub 2017 Aug 20.
8
Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images.
Med Image Anal. 2014 Jul;18(5):752-71. doi: 10.1016/j.media.2014.04.003. Epub 2014 Apr 24.
9
Incremental learning with SVM for multimodal classification of prostatic adenocarcinoma.
PLoS One. 2014 Apr 3;9(4):e93600. doi: 10.1371/journal.pone.0093600. eCollection 2014.
10
Tissue-based MRI intensity standardization: application to multicentric datasets.
Int J Biomed Imaging. 2012;2012:347120. doi: 10.1155/2012/347120. Epub 2012 May 3.

本文引用的文献

1
Parameter estimation and tissue segmentation from multispectral MR images.
IEEE Trans Med Imaging. 1994;13(3):441-9. doi: 10.1109/42.310875.
2
Deformable boundary finding in medical images by integrating gradient and region information.
IEEE Trans Med Imaging. 1996;15(6):859-70. doi: 10.1109/42.544503.
3
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
4
A framework for evaluating image segmentation algorithms.
Comput Med Imaging Graph. 2006 Mar;30(2):75-87. doi: 10.1016/j.compmedimag.2005.12.001.
5
Interplay between intensity standardization and inhomogeneity correction in MR image processing.
IEEE Trans Med Imaging. 2005 May;24(5):561-76. doi: 10.1109/TMI.2004.843256.
6
Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours.
IEEE Trans Biomed Eng. 2004 May;51(5):800-11. doi: 10.1109/TBME.2004.826654.
7
Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.
IEEE Trans Med Imaging. 2002 Aug;21(8):910-23. doi: 10.1109/TMI.2002.803124.
8
Retrospective correction of MR intensity inhomogeneity by information minimization.
IEEE Trans Med Imaging. 2001 Dec;20(12):1398-410. doi: 10.1109/42.974934.
9
Current methods in medical image segmentation.
Annu Rev Biomed Eng. 2000;2:315-37. doi: 10.1146/annurev.bioeng.2.1.315.
10
Automated segmentation of multiple sclerosis lesions by model outlier detection.
IEEE Trans Med Imaging. 2001 Aug;20(8):677-88. doi: 10.1109/42.938237.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验