Suppr超能文献

利用基因组学方法鉴定模式鱼类中的缺氧生物标志物

Genomic approaches in the identification of hypoxia biomarkers in model fish species.

作者信息

Zhang Ziping, Ju Zhenlin, Wells Melissa C, Walter Ronald B

机构信息

Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.

出版信息

J Exp Mar Biol Ecol. 2009 Dec 1;381(Suppl 1):S180-S187. doi: 10.1016/j.jembe.2009.07.021.

Abstract

Eutrophication leading to hypoxic water conditions has become a major problem in aquatic systems worldwide. Monitoring the levels and biological effects of lowered oxygen levels in aquatic systems may provide data useful in management of natural aquatic environments. Fishes represent an economically important resource that is subject to hypoxia exposure effects. Due to the extreme diversity of fish species and their habitats, fishes in general have evolved unique capabilities to modulate gene expression patterns in response to hypoxic stress. Recent studies have attempted to document quantitative changes in gene expression patterns induced in various fish species in response to reduced dissolved oxygen levels. From a management perspective, the goal of these studies is to provide a more complete characterization of hypoxia responsive genes in fish, as molecular indicators (biomarkers) of ecosystem hypoxic stress.The molecular genetic response to hypoxia is highly complex and overlaps with other stress responses making it difficult to identify hypoxia specific responses using traditional single gene or low throughput approaches. Therefore, recent approaches have been aimed at developing functional genomic (e.g. high density microarray and real-time PCR) and proteomic (two-dimensional fluorescence difference in gel electrophoresis coupled with mass spectrometry based peptide identification) technologies that employ fish species. Many of the fish species utilized in these studies do not have the advantages of underlying genome resources (i.e., genome or transcriptome sequences). Efforts have attempted to establish correlations between discreet molecular responses elicited by fish in response to hypoxia and changes in the genetic profiles of stressed organs or tissues. Notable progress in these areas has been made using several different versions of either cDNA or oligonucleotide based microarrays to profile changes in gene expression patterns in response to hypoxic stress.Due to these efforts, hundreds of hypoxia responsive genes have been identified both from laboratory reared aquaria fish and from feral fish derived from both fresh and saltwater habitats. Herein, we review these reports and the emergence of hypoxia biomarker development in aquatic species. We also include some of our own recent results using the medaka (Oryzias latipes) as a model to define genetic profiles of hypoxia exposure.

摘要

富营养化导致水体缺氧已成为全球水生系统中的一个主要问题。监测水生系统中氧含量降低的水平及其生物效应,可能会为自然水生环境的管理提供有用的数据。鱼类是一种具有重要经济价值的资源,容易受到缺氧暴露的影响。由于鱼类物种及其栖息地的极端多样性,一般来说,鱼类已经进化出独特的能力来调节基因表达模式以应对缺氧应激。最近的研究试图记录各种鱼类在溶解氧水平降低时基因表达模式的定量变化。从管理角度来看,这些研究的目标是更全面地表征鱼类中的缺氧反应基因,作为生态系统缺氧应激的分子指标(生物标志物)。对缺氧的分子遗传反应非常复杂,并且与其他应激反应重叠,这使得使用传统的单基因或低通量方法难以识别缺氧特异性反应。因此,最近的方法旨在开发功能基因组学(如高密度微阵列和实时PCR)和蛋白质组学(二维荧光差异凝胶电泳结合基于质谱的肽鉴定)技术,这些技术都应用于鱼类物种。这些研究中使用的许多鱼类物种没有潜在基因组资源(即基因组或转录组序列)的优势。人们努力尝试在鱼类对缺氧引发的离散分子反应与应激器官或组织的基因谱变化之间建立相关性。使用几种不同版本的基于cDNA或寡核苷酸的微阵列来分析缺氧应激下基因表达模式的变化,在这些领域已经取得了显著进展。由于这些努力,已经从实验室饲养的水族箱鱼类以及来自淡水和咸水栖息地的野生鱼类中鉴定出数百个缺氧反应基因。在此,我们综述这些报告以及水生物种中缺氧生物标志物开发的出现情况。我们还包括了我们自己最近使用青鳉(Oryzias latipes)作为模型来定义缺氧暴露基因谱的一些结果。

相似文献

1
Genomic approaches in the identification of hypoxia biomarkers in model fish species.
J Exp Mar Biol Ecol. 2009 Dec 1;381(Suppl 1):S180-S187. doi: 10.1016/j.jembe.2009.07.021.
2
Identification of robust hypoxia biomarker candidates from fin of medaka (Oryzias latipes).
Comp Biochem Physiol C Toxicol Pharmacol. 2012 Jan;155(1):11-7. doi: 10.1016/j.cbpc.2011.05.015. Epub 2011 Jun 1.
3
Comparison of gene expression responses to hypoxia in viviparous (Xiphophorus) and oviparous (Oryzias) fishes using a medaka microarray.
Comp Biochem Physiol C Toxicol Pharmacol. 2009 Mar;149(2):258-65. doi: 10.1016/j.cbpc.2008.11.005. Epub 2008 Nov 21.
4
Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia.
J Comp Physiol B. 2011 Feb;181(2):199-208. doi: 10.1007/s00360-010-0518-2. Epub 2010 Oct 21.
5
A model of fish preference and mortality under hypoxic water in the coastal environment.
Mar Pollut Bull. 2003;47(1-6):25-9. doi: 10.1016/S0025-326X(02)00409-5.
6
Evaluating hypoxia-inducible factor-1α mRNA expression in a pelagic fish, Pacific herring Clupea pallasii, as a biomarker for hypoxia exposure.
Comp Biochem Physiol A Mol Integr Physiol. 2015 Nov;189:58-66. doi: 10.1016/j.cbpa.2015.07.016. Epub 2015 Aug 1.
7
Hypoxia: from molecular responses to ecosystem responses.
Mar Pollut Bull. 2002;45(1-12):35-45. doi: 10.1016/s0025-326x(02)00061-9.
8
Multiple tissue gene expression analyses in Japanese medaka (Oryzias latipes) exposed to hypoxia.
Comp Biochem Physiol C Toxicol Pharmacol. 2007 Feb;145(1):134-44. doi: 10.1016/j.cbpc.2006.06.012. Epub 2006 Jun 30.
9
Transcriptomic responses of the liver of mandarin fish (Siniperca chuatsi) under hypoxic stress.
J Fish Biol. 2023 Jul;103(1):44-58. doi: 10.1111/jfb.15399. Epub 2023 May 8.

引用本文的文献

2
Cell-cultivated aquatic food products: emerging production systems for seafood.
J Biol Eng. 2024 Aug 7;18(1):43. doi: 10.1186/s13036-024-00436-1.
3
Comparative Transcriptome Analysis of Head Kidney of Aeromonas hydrophila-infected Hypoxia-tolerant and Normal Large Yellow Croaker.
Mar Biotechnol (NY). 2022 Dec;24(6):1039-1054. doi: 10.1007/s10126-022-10158-4. Epub 2022 Sep 21.
6
Developing specific molecular biomarkers for thermal stress in salmonids.
BMC Genomics. 2018 Oct 16;19(1):749. doi: 10.1186/s12864-018-5108-9.
7
Differential Gene Expression Profiles and Alternative Isoform Regulations in Gill of Nile Tilapia in Response to Acute Hypoxia.
Mar Biotechnol (NY). 2017 Dec;19(6):551-562. doi: 10.1007/s10126-017-9774-4. Epub 2017 Sep 18.
8
HRGFish: A database of hypoxia responsive genes in fishes.
Sci Rep. 2017 Feb 13;7:42346. doi: 10.1038/srep42346.
10
Hypoxia turns genotypic female medaka fish into phenotypic males.
Ecotoxicology. 2014 Sep;23(7):1260-9. doi: 10.1007/s10646-014-1269-8. Epub 2014 Jul 11.

本文引用的文献

1
Effects of estrone on full life cycle of Java medaka (Oryzias javanicus), a new marine test fish.
Environ Toxicol Chem. 2007 Apr;26(4):726-31. doi: 10.1897/05-539r2.1.
2
Animal models of human disease: zebrafish swim into view.
Nat Rev Genet. 2007 May;8(5):353-67. doi: 10.1038/nrg2091.
3
Multiple tissue gene expression analyses in Japanese medaka (Oryzias latipes) exposed to hypoxia.
Comp Biochem Physiol C Toxicol Pharmacol. 2007 Feb;145(1):134-44. doi: 10.1016/j.cbpc.2006.06.012. Epub 2006 Jun 30.
6
Hypoxia-inducible factor as a physiological regulator.
Exp Physiol. 2005 Nov;90(6):791-7. doi: 10.1113/expphysiol.2005.030924. Epub 2005 Sep 12.
7
Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish.
Am J Physiol Regul Integr Comp Physiol. 2005 Nov;289(5):R1512-9. doi: 10.1152/ajpregu.00089.2005. Epub 2005 Jun 30.
8
The development of the DIGE system: 2D fluorescence difference gel analysis technology.
Anal Bioanal Chem. 2005 Jun;382(3):669-78. doi: 10.1007/s00216-005-3126-3. Epub 2005 May 18.
9
Oxygen-dependent gene expression in fishes.
Am J Physiol Regul Integr Comp Physiol. 2005 May;288(5):R1079-90. doi: 10.1152/ajpregu.00626.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验