Suppr超能文献

吸收与转运对蛋白质治疗药物智能疗法及纳米级递送的影响。

Impact of Absorption and Transport on Intelligent Therapeutics and Nano-scale Delivery of Protein Therapeutic Agents.

作者信息

Peppas Nicholas A, Carr Daniel A

机构信息

Center of Biomaterials, Drug Delivery, Bionanotechnology and Molecular Recognition, Departments of Chemical and Biomedical Engineering and College of Pharmacy, The University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712, USA.

出版信息

Chem Eng Sci. 2009 Nov 16;64(22):4553-4565. doi: 10.1016/j.ces.2009.04.050.

Abstract

The combination of materials design and advances in nanotechnology has led to the development of new therapeutic protein delivery systems. The pulmonary, nasal, buccal and other routes have been investigated as delivery options for protein therapy, but none result in improved patient compliances and patient quality of life as the oral route. For the oral administration of these new systems, an understanding of protein transport is essential because of the dynamic nature of the gastrointestinal tract and the barriers to transport that exist.Models have been developed to describe the transport between the gastrointestinal lumen and the bloodstream, and laboratory techniques like cell culture provide a means to investigate the absorption and transport of many therapeutic agents. Biomaterials, including stimuli-sensitive complexation hydrogels, have been investigated as promising carriers for oral delivery. However, the need to develop models that accurately predict protein blood concentration as a function of the material structure and properties still exists.

摘要

材料设计与纳米技术进步的结合推动了新型治疗性蛋白质递送系统的发展。肺部、鼻腔、口腔及其他给药途径已作为蛋白质治疗的递送选择进行了研究,但没有一种途径能像口服途径那样提高患者的依从性和生活质量。对于这些新系统的口服给药,由于胃肠道的动态性质和存在的转运屏障,了解蛋白质转运至关重要。已经开发出模型来描述胃肠道腔与血液之间的转运,细胞培养等实验室技术提供了一种研究许多治疗剂吸收和转运的方法。包括刺激敏感络合水凝胶在内的生物材料已被研究作为口服递送的有前景的载体。然而,仍然需要开发能够根据材料结构和性质准确预测蛋白质血药浓度的模型。

相似文献

3
Advances in buccal and oral delivery of insulin.
Int J Pharm. 2023 Feb 25;633:122623. doi: 10.1016/j.ijpharm.2023.122623. Epub 2023 Jan 19.
4
Principles of transmucosal delivery of therapeutic agents.
Biomed Pharmacother. 2004 Apr;58(3):142-51. doi: 10.1016/j.biopha.2004.01.006.
5
Oral absorption mechanisms of polysaccharides and potential as carriers for the construction of nano-delivery systems: A review.
Int J Biol Macromol. 2025 May;310(Pt 2):143184. doi: 10.1016/j.ijbiomac.2025.143184. Epub 2025 Apr 18.
6
Enteral Route Nanomedicine for Cancer Therapy.
Int J Nanomedicine. 2024 Sep 25;19:9889-9919. doi: 10.2147/IJN.S482329. eCollection 2024.
7
Nanotechnology as a promising strategy for alternative routes of insulin delivery.
Methods Enzymol. 2012;508:271-94. doi: 10.1016/B978-0-12-391860-4.00014-8.
8
Enhancing the buccal mucosal delivery of peptide and protein therapeutics.
Pharm Res. 2015 Jan;32(1):1-21. doi: 10.1007/s11095-014-1485-1. Epub 2014 Aug 29.
9
Oral delivery of biomacromolecules by overcoming biological barriers in the gastrointestinal tract: an update.
Expert Opin Drug Deliv. 2023 Jul-Dec;20(10):1333-1347. doi: 10.1080/17425247.2023.2231343. Epub 2023 Jul 13.
10
Therapeutic applications of hydrogels in oral drug delivery.
Expert Opin Drug Deliv. 2014 Jun;11(6):901-15. doi: 10.1517/17425247.2014.902047.

引用本文的文献

1
Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials.
Polymers (Basel). 2023 Nov 28;15(23):4563. doi: 10.3390/polym15234563.
2
Engineered Skin Tissue Equivalents for Product Evaluation and Therapeutic Applications.
Biotechnol J. 2019 Jul;14(7):e1900022. doi: 10.1002/biot.201900022. Epub 2019 May 17.
3
Fab on a Package: LTCC Microfluidic Devices Applied to Chemical Process Miniaturization.
Micromachines (Basel). 2018 Jun 5;9(6):285. doi: 10.3390/mi9060285.
4
Guiding protein delivery into live cells using DNA-programmed membrane fusion.
Chem Sci. 2018 Jun 15;9(27):5967-5975. doi: 10.1039/c8sc00367j. eCollection 2018 Jul 21.
5
Biomedical microelectromechanical systems (BioMEMS): Revolution in drug delivery and analytical techniques.
Saudi Pharm J. 2016 Jan;24(1):1-20. doi: 10.1016/j.jsps.2013.12.003. Epub 2013 Dec 23.
6
Hybrid responsive hydrogel carriers for oral delivery of low molecular weight therapeutic agents.
J Drug Deliv Sci Technol. 2015 Dec 1;30(Pt B):352-359. doi: 10.1016/j.jddst.2015.07.023.
7
Tissue engineered human skin equivalents.
Pharmaceutics. 2012 Jan 6;4(1):26-41. doi: 10.3390/pharmaceutics4010026.
8
Microfabrication technologies for oral drug delivery.
Adv Drug Deliv Rev. 2012 May 1;64(6):496-507. doi: 10.1016/j.addr.2011.11.013. Epub 2011 Dec 4.

本文引用的文献

1
Dynamics of Poly(ethylene glycol)-Tethered, pH Responsive Networks.
Polymer (Guildf). 2007 Aug 10;48(17):5042-5048. doi: 10.1016/j.polymer.2007.06.035.
2
Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery.
Biomacromolecules. 2008 Apr;9(4):1293-8. doi: 10.1021/bm701274p. Epub 2008 Mar 11.
3
Protein therapeutics: a summary and pharmacological classification.
Nat Rev Drug Discov. 2008 Jan;7(1):21-39. doi: 10.1038/nrd2399.
4
Salmon calcitonin: a review of current and future therapeutic indications.
Osteoporos Int. 2008 Apr;19(4):479-91. doi: 10.1007/s00198-007-0490-1. Epub 2007 Dec 11.
5
Combination therapy for treatment of osteoporosis: A review.
Am J Obstet Gynecol. 2007 Dec;197(6):559-65. doi: 10.1016/j.ajog.2007.07.022.
7
Natural and synthetic polymers as inhibitors of drug efflux pumps.
Pharm Res. 2008 Mar;25(3):500-11. doi: 10.1007/s11095-007-9347-8. Epub 2007 Sep 26.
8
Insulin's 85th anniversary--An enduring medical miracle.
Diabetes Res Clin Pract. 2007 Nov;78(2):149-58. doi: 10.1016/j.diabres.2007.04.001. Epub 2007 May 4.
9
Epidemiology of Paget's disease in Europe: the prevalence is decreasing.
J Bone Miner Res. 2006 Oct;21(10):1545-9. doi: 10.1359/jbmr.060704.
10
A new scaleable freeze-thaw technology for bulk protein solutions.
Biotechnol Appl Biochem. 2007 Jan;46(Pt 1):13-26. doi: 10.1042/BA20060075.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验