Suppr超能文献

用于蛋白酶筛选的基于氟的肽微阵列

Fluorous-based Peptide Microarrays for Protease Screening.

作者信息

Collet Beatrice Y M, Nagashima Tadamichi, Yu Marvin S, Pohl Nicola L B

机构信息

Department of Chemistry and the Plant Sciences Institute, Gilman Hall, Iowa State University, Ames, IA, 50011-3111.

出版信息

J Fluor Chem. 2009 Nov 1;130(11):1042-1048. doi: 10.1016/j.jfluchem.2009.09.005.

Abstract

As ever more protease sequences are uncovered through genome sequencing projects, efficient parallel methods to discover the potential substrates of these proteases becomes crucial. Herein we describe the first use of fluorous-based microarrays to probe peptide sequences and begin to define the scope and limitations of fluorous microarray technologies for the screening of proteases. Comparison of a series of serine proteases showed that their ability to cleave peptide substrates in solution was maintained upon immobilization of these substrates onto fluorous-coated glass slides. The fluorous surface did not serve to significantly inactivate the enzymes. However, addition of hydrophilic components to the peptide sequences could induce lower rates of substrate cleavage with enzymes such as chymotrypsin with affinities to hydrophobic moieties. This work represents the first step to creating robust protease screening platforms using noncovalent microarray interface that can easily incorporate a range of compounds on the same slide.

摘要

随着通过基因组测序项目发现越来越多的蛋白酶序列,开发高效的并行方法来发现这些蛋白酶的潜在底物变得至关重要。在此,我们描述了首次使用基于氟的微阵列来探测肽序列,并开始确定用于蛋白酶筛选的氟微阵列技术的范围和局限性。对一系列丝氨酸蛋白酶的比较表明,当将这些底物固定在氟涂层载玻片上时,它们在溶液中切割肽底物的能力得以保持。氟表面并没有显著使酶失活。然而,向肽序列中添加亲水性成分可能会导致诸如对疏水部分具有亲和力的胰凝乳蛋白酶等酶的底物切割速率降低。这项工作代表了使用非共价微阵列界面创建强大的蛋白酶筛选平台的第一步,该界面可以轻松地在同一张载玻片上整合一系列化合物。

相似文献

1
Fluorous-based Peptide Microarrays for Protease Screening.
J Fluor Chem. 2009 Nov 1;130(11):1042-1048. doi: 10.1016/j.jfluchem.2009.09.005.
2
Fluorous-based small-molecule microarrays for protein, antibody and enzyme screening.
Future Med Chem. 2009 Aug;1(5):889-96. doi: 10.4155/fmc.09.76.
3
Fluorous-based carbohydrate microarrays.
J Am Chem Soc. 2005 Sep 28;127(38):13162-3. doi: 10.1021/ja054811k.
4
Rewritable Surface on a Plastic Substrate Using Fluorous Affinity.
ACS Appl Mater Interfaces. 2022 Jan 19;14(2):3255-3263. doi: 10.1021/acsami.1c18633. Epub 2021 Dec 19.
5
Peptide microarrays for the determination of protease substrate specificity.
J Am Chem Soc. 2002 Dec 18;124(50):14868-70. doi: 10.1021/ja027477q.
6
Production of fluorous-based microarrays with uncharged carbohydrates.
Methods Mol Biol. 2012;808:149-53. doi: 10.1007/978-1-61779-373-8_10.
7
High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays.
Mol Cell Proteomics. 2005 May;4(5):626-36. doi: 10.1074/mcp.M500004-MCP200. Epub 2005 Feb 10.
8
Immobilization of antimicrobial peptide IG-25 onto fluoropolymers via fluorous interactions and click chemistry.
ACS Appl Mater Interfaces. 2013 Dec 26;5(24):12789-93. doi: 10.1021/am404591n. Epub 2013 Dec 4.

引用本文的文献

1
High-Throughput Amenable MALDI-MS Detection of RNA and DNA with On-Surface Analyte Enrichment Using Fluorous Partitioning.
SLAS Discov. 2021 Jan;26(1):58-66. doi: 10.1177/2472555220958391. Epub 2020 Sep 29.
2
Perfluorocarbons in Chemical Biology.
Chembiochem. 2020 Dec 11;21(24):3451-3462. doi: 10.1002/cbic.202000297. Epub 2020 Aug 5.
3
Reversible DNA micro-patterning using the fluorous effect.
Chem Commun (Camb). 2017 Mar 9;53(21):3094-3097. doi: 10.1039/c7cc00288b.
4
Substrate-driven mapping of the degradome by comparison of sequence logos.
PLoS Comput Biol. 2013;9(11):e1003353. doi: 10.1371/journal.pcbi.1003353. Epub 2013 Nov 14.
5
Deciphering enzyme function using peptide arrays.
Mol Biotechnol. 2011 Nov;49(3):283-305. doi: 10.1007/s12033-011-9402-x.
6
A fluorous phosphate protecting group with applications to carbohydrate synthesis.
Org Lett. 2011 Apr 1;13(7):1824-7. doi: 10.1021/ol2003435. Epub 2011 Mar 8.
7
Fluorous iminoalditols: a new family of glycosidase inhibitors and pharmacological chaperones.
Chembiochem. 2010 Sep 24;11(14):2026-33. doi: 10.1002/cbic.201000192.

本文引用的文献

2
Fluorous tagged small molecule microarrays.
Chem Commun (Camb). 2007 Oct 14(38):3906-8. doi: 10.1039/b712906h. Epub 2007 Sep 4.
3
Fluorous-based small-molecule microarrays for the discovery of histone deacetylase inhibitors.
Angew Chem Int Ed Engl. 2007;46(42):7960-4. doi: 10.1002/anie.200703198.
4
In search of partners: linking extracellular proteases to substrates.
Nat Rev Mol Cell Biol. 2007 Mar;8(3):245-57. doi: 10.1038/nrm2120. Epub 2007 Feb 14.
5
Activity based fingerprinting of proteases using FRET peptides.
Biopolymers. 2007;88(2):141-9. doi: 10.1002/bip.20664.
6
Inflammation after intracerebral hemorrhage.
J Cereb Blood Flow Metab. 2007 May;27(5):894-908. doi: 10.1038/sj.jcbfm.9600403. Epub 2006 Oct 11.
7
Fluorous-based carbohydrate microarrays.
J Am Chem Soc. 2005 Sep 28;127(38):13162-3. doi: 10.1021/ja054811k.
8
Peptide arrays for kinase profiling.
Chembiochem. 2005 Mar;6(3):513-21. doi: 10.1002/cbic.200400314.
10
Cysteine proteases of malaria parasites.
Int J Parasitol. 2004 Dec;34(13-14):1489-99. doi: 10.1016/j.ijpara.2004.10.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验