Hall Michelle Lynn, Goldfeld Dahlia A, Bochevarov Arteum D, Friesner Richard A
J Chem Theory Comput. 2009 Nov 10;5(11):2996-3009. doi: 10.1021/ct9003965.
This work describes the extension of a previously reported empirical localized orbital correction model for density functional theory (DFT-LOC) for atomization energies, ionization potentials, electron affinities, and reaction enthalpies to the correction of barrier heights for chemical reactions of various types including cycloadditions, cycloreversions, dipolar cycloadditions, S(N)2's, carbon radical reactions, hydrogen radical reactions, sigmatropic shifts, and electrocyclizations. The B3LYP localized orbital correction version of the model (B3LYP-LOC) reduces the number of outliers and overall mean unsigned error (MUE) vs. experiment or ab initio values from 3.2 to 1.3 kcal/mole for barrier heights and from 5.1 to 1.1 kcal/mole for reaction enthalpies versus B3LYP. Furthermore, the new model has essentially zero additional computational cost beyond standard DFT calculations. Although the model is heuristic and is based on multiple linear regression to experimental or ab initio data, each of the parameters is justified on chemical grounds and provides insight into the fundamental limitations of DFT, most importantly the failure of current DFT methods to accurately account for nondynamical electron correlation.
本工作描述了一种先前报道的用于密度泛函理论(DFT-LOC)的经验性定域轨道校正模型的扩展,该模型原用于原子化能、电离势、电子亲和能和反应焓,现扩展至校正各类化学反应的势垒高度,包括环加成反应、环化逆转反应、偶极环加成反应、S(N)2反应、碳自由基反应、氢自由基反应、σ迁移反应和电环化反应。该模型的B3LYP定域轨道校正版本(B3LYP-LOC)与B3LYP相比,对于势垒高度,将离群值数量和相对于实验值或从头算值的总体平均绝对误差(MUE)从3.2降至1.3 kcal/mol;对于反应焓,从5.1降至1.1 kcal/mol。此外,新模型在标准DFT计算之外基本没有额外的计算成本。尽管该模型是启发式的,基于对实验数据或从头算数据的多元线性回归,但每个参数都有化学依据,并且揭示了DFT的基本局限性,最重要的是当前DFT方法未能准确考虑非动态电子相关性。