Friesner Richard A, Knoll Eric H, Cao Yixiang
Department of Chemistry, Columbia University, New York, NY 10025, USA.
J Chem Phys. 2006 Sep 28;125(12):124107. doi: 10.1063/1.2263795.
This paper describes an empirical localized orbital correction model which improves the accuracy of density functional theory (DFT) methods for the prediction of thermochemical properties for molecules of first and second row elements. The B3LYP localized orbital correction version of the model improves B3LYP DFT atomization energy calculations on the G3 data set of 222 molecules from a mean absolute deviation (MAD) from experiment of 4.8 to 0.8 kcal/mol. The almost complete elimination of large outliers and the substantial reduction in MAD yield overall results comparable to the G3 wave-function-based method; furthermore, the new model has zero additional computational cost beyond standard DFT calculations. The following four classes of correction parameters are applied to a molecule based on standard valence bond assignments: corrections to atoms, corrections to individual bonds, corrections for neighboring bonds of a given bond, and radical environmental corrections. Although the model is heuristic and is based on a 22 parameter multiple linear regression to experimental errors, each of the parameters is justified on physical grounds, and each provides insight into the fundamental limitations of DFT, most importantly the failure of current DFT methods to accurately account for nondynamical electron correlation.
本文描述了一种经验性的定域轨道校正模型,该模型提高了密度泛函理论(DFT)方法预测第一和第二周期元素分子热化学性质的准确性。该模型的B3LYP定域轨道校正版本将G3数据集中222个分子的B3LYP DFT原子化能计算的平均绝对偏差(MAD)从相对于实验值的4.8 kcal/mol降低到了0.8 kcal/mol。几乎完全消除了大的离群值,且MAD大幅降低,总体结果与基于G3波函数的方法相当;此外,新模型在标准DFT计算之外没有额外的计算成本。基于标准价键归属,将以下四类校正参数应用于分子:原子校正、单个键的校正、给定键的相邻键的校正以及自由基环境校正。尽管该模型是启发式的,基于对实验误差的22参数多元线性回归,但每个参数都有物理依据,且每个参数都能深入了解DFT的基本局限性,最重要的是当前DFT方法未能准确考虑非动态电子相关。