Balsa-Canto Eva, Alonso Antonio A, Banga Julio R
Bioprocess Engineering Group, Spanish National Research Council, IIM-CSIC, 36208 Vigo-Spain.
BMC Syst Biol. 2010 Feb 17;4:11. doi: 10.1186/1752-0509-4-11.
Mathematical models provide abstract representations of the information gained from experimental observations on the structure and function of a particular biological system. Conferring a predictive character on a given mathematical formulation often relies on determining a number of non-measurable parameters that largely condition the model's response. These parameters can be identified by fitting the model to experimental data. However, this fit can only be accomplished when identifiability can be guaranteed.
We propose a novel iterative identification procedure for detecting and dealing with the lack of identifiability. The procedure involves the following steps: 1) performing a structural identifiability analysis to detect identifiable parameters; 2) globally ranking the parameters to assist in the selection of the most relevant parameters; 3) calibrating the model using global optimization methods; 4) conducting a practical identifiability analysis consisting of two (a priori and a posteriori) phases aimed at evaluating the quality of given experimental designs and of the parameter estimates, respectively and 5) optimal experimental design so as to compute the scheme of experiments that maximizes the quality and quantity of information for fitting the model.
The presented procedure was used to iteratively identify a mathematical model that describes the NF-kappaB regulatory module involving several unknown parameters. We demonstrated the lack of identifiability of the model under typical experimental conditions and computed optimal dynamic experiments that largely improved identifiability properties.
数学模型提供了从对特定生物系统的结构和功能进行实验观察所获得信息的抽象表示。赋予给定数学公式预测特性通常依赖于确定大量在很大程度上决定模型响应的不可测量参数。这些参数可以通过将模型与实验数据拟合来识别。然而,只有在能够保证可识别性时才能实现这种拟合。
我们提出了一种用于检测和处理缺乏可识别性的新颖迭代识别程序。该程序包括以下步骤:1)进行结构可识别性分析以检测可识别参数;2)对参数进行全局排序以协助选择最相关的参数;3)使用全局优化方法校准模型;4)进行实际可识别性分析,该分析由两个阶段(先验和后验)组成,分别旨在评估给定实验设计的质量和参数估计的质量;5)进行最优实验设计,以便计算使拟合模型的信息质量和数量最大化的实验方案。
所提出的程序用于迭代识别一个描述涉及多个未知参数的NF-κB调节模块的数学模型。我们证明了在典型实验条件下该模型缺乏可识别性,并计算出了极大改善可识别性特性的最优动态实验。