Suppr超能文献

传染病分阶段模型中的随机性:量化百日咳的动力学。

Stochasticity in staged models of epidemics: quantifying the dynamics of whooping cough.

机构信息

Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK.

出版信息

J R Soc Interface. 2010 Aug 6;7(49):1219-27. doi: 10.1098/rsif.2009.0514. Epub 2010 Feb 17.

Abstract

Although many stochastic models can accurately capture the qualitative epidemic patterns of many childhood diseases, there is still considerable discussion concerning the basic mechanisms generating these patterns; much of this stems from the use of deterministic models to try to understand stochastic simulations. We argue that a systematic method of analysing models of the spread of childhood diseases is required in order to consistently separate out the effects of demographic stochasticity, external forcing and modelling choices. Such a technique is provided by formulating the models as master equations and using the van Kampen system-size expansion to provide analytical expressions for quantities of interest. We apply this method to the susceptible-exposed-infected-recovered (SEIR) model with distributed exposed and infectious periods and calculate the form that stochastic oscillations take on in terms of the model parameters. With the use of a suitable approximation, we apply the formalism to analyse a model of whooping cough which includes seasonal forcing. This allows us to more accurately interpret the results of simulations and to make a more quantitative assessment of the predictions of the model. We show that the observed dynamics are a result of a macroscopic limit cycle induced by the external forcing and resonant stochastic oscillations about this cycle.

摘要

尽管许多随机模型可以准确捕捉许多儿童疾病的定性流行模式,但对于产生这些模式的基本机制仍存在相当大的讨论;其中很大一部分源于使用确定性模型来尝试理解随机模拟。我们认为,需要有一种系统的方法来分析儿童疾病传播模型,以便能够始终如一地分离出人口随机性、外部强制和建模选择的影响。这种技术是通过将模型表述为主方程,并使用范坎彭系统大小展开来提供感兴趣的量的解析表达式来提供的。我们将这种方法应用于具有分布式暴露和感染期的易感-暴露-感染-恢复(SEIR)模型,并根据模型参数计算随机振荡的形式。通过使用合适的近似值,我们应用形式主义来分析包括季节性强制的百日咳模型。这使我们能够更准确地解释模拟结果,并对模型的预测进行更定量的评估。我们表明,观察到的动力学是由外部强制和围绕该循环的共振随机振荡引起的宏观极限循环的结果。

相似文献

2
Stochastic amplification in an epidemic model with seasonal forcing.具有季节强迫的传染病模型中的随机放大。
J Theor Biol. 2010 Nov 7;267(1):85-94. doi: 10.1016/j.jtbi.2010.08.014. Epub 2010 Aug 17.
4
Recurrent epidemics in small world networks.小世界网络中的反复流行。
J Theor Biol. 2005 Apr 21;233(4):553-61. doi: 10.1016/j.jtbi.2004.10.031. Epub 2004 Dec 15.
5
Stochastic effects in a seasonally forced epidemic model.季节性强迫流行模型中的随机效应。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041906. doi: 10.1103/PhysRevE.82.041906. Epub 2010 Oct 6.
6
Stochastic fluctuations in epidemics on networks.网络上流行病的随机波动。
J R Soc Interface. 2008 May 6;5(22):555-66. doi: 10.1098/rsif.2007.1206.
7
Stochastic oscillations in models of epidemics on a network of cities.城市网络上流行病模型中的随机振荡。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051919. doi: 10.1103/PhysRevE.84.051919. Epub 2011 Nov 28.
9
Multifractal signatures of infectious diseases.传染病的多重分形特征。
J R Soc Interface. 2012 Sep 7;9(74):2167-80. doi: 10.1098/rsif.2011.0886. Epub 2012 Mar 22.

引用本文的文献

4
The cohort effect in childhood disease dynamics.儿童疾病动态中的队列效应。
J R Soc Interface. 2016 Jul;13(120). doi: 10.1098/rsif.2016.0156.
6
Dynamics of Pertussis Transmission in the United States.美国百日咳传播动态
Am J Epidemiol. 2015 Jun 15;181(12):921-31. doi: 10.1093/aje/kwv024. Epub 2015 May 27.
7
A century of transitions in New York City's measles dynamics.纽约市麻疹动态的百年变迁
J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2015.0024.

本文引用的文献

1
Stochastic fluctuations in the susceptible-infective-recovered model with distributed infectious periods.具有分布感染期的易感-感染-康复模型中的随机波动。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021922. doi: 10.1103/PhysRevE.80.021922. Epub 2009 Aug 19.
2
Limit cycles, complex Floquet multipliers, and intrinsic noise.极限环、复弗洛凯乘数与内在噪声。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051131. doi: 10.1103/PhysRevE.79.051131. Epub 2009 May 29.
4
Integrating stochasticity and network structure into an epidemic model.将随机性和网络结构整合到一个流行病模型中。
J R Soc Interface. 2009 Sep 6;6(38):761-74. doi: 10.1098/rsif.2008.0410. Epub 2008 Oct 30.
6
8
Stochastic fluctuations in epidemics on networks.网络上流行病的随机波动。
J R Soc Interface. 2008 May 6;5(22):555-66. doi: 10.1098/rsif.2007.1206.
10
On methods for studying stochastic disease dynamics.关于研究随机疾病动态的方法。
J R Soc Interface. 2008 Feb 6;5(19):171-81. doi: 10.1098/rsif.2007.1106.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验