Suppr超能文献

基于微观暴露风险的模型预测呼吸道传染病传播趋势。

Forecasting the transmission trends of respiratory infectious diseases with an exposure-risk-based model at the microscopic level.

机构信息

School of Intelligent System Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.

College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang, China.

出版信息

Environ Res. 2022 Sep;212(Pt C):113428. doi: 10.1016/j.envres.2022.113428. Epub 2022 May 12.

Abstract

Respiratory infectious diseases (e.g., COVID-19) have brought huge damages to human society, and the accurate prediction of their transmission trends is essential for both the health system and policymakers. Most related studies focus on epidemic trend forecasting at the macroscopic level, which ignores the microscopic social interactions among individuals. Meanwhile, current microscopic models are still not able to sufficiently decipher the individual-based spreading process and lack valid quantitative tests. To tackle these problems, we propose an exposure-risk-based model at the microscopic level, including 4 modules: individual movement, virion-laden droplet movement, individual exposure risk estimation, and prediction of transmission trends. Firstly, the front two modules reproduce the movements of individuals and the droplets of infectors' expiratory activities, respectively. Then, the outputs are fed to the third module to estimate the personal exposure risk. Finally, the number of new cases is predicted in the final module. By predicting the new COVID- 19 cases in the United States, the performances of our model and 4 other existing macroscopic or microscopic models are compared. Specifically, the mean absolute error, root mean square error, and mean absolute percentage error provided by the proposed model are respectively 2454.70, 3170.51, and 3.38% smaller than the minimum results of comparison models. The quantitative results reveal that our model can accurately predict the transmission trends from a microscopic perspective, and it can benefit the further investigation of many microscopic disease transmission factors (e.g., non-walkable areas and facility layouts).

摘要

呼吸道传染病(例如,COVID-19)给人类社会带来了巨大的破坏,准确预测其传播趋势对卫生系统和政策制定者都至关重要。大多数相关研究都集中在宏观层面的疫情趋势预测上,而忽略了个体之间的微观社会相互作用。同时,当前的微观模型仍然无法充分解析基于个体的传播过程,并且缺乏有效的定量测试。为了解决这些问题,我们提出了一种微观层面的基于暴露风险的模型,包括 4 个模块:个体运动、含病毒飞沫的运动、个体暴露风险估计和传播趋势预测。首先,前两个模块分别再现了个体的运动和感染者呼气活动产生的飞沫的运动。然后,将输出结果输入到第三个模块,以估计个人暴露风险。最后,在最后一个模块中预测传播趋势。通过预测美国新的 COVID-19 病例,比较了我们的模型和其他 4 个现有的宏观或微观模型的性能。具体来说,我们的模型提供的平均绝对误差、均方根误差和平均绝对百分比误差分别比比较模型的最小结果小 2454.70、3170.51 和 3.38%。定量结果表明,我们的模型可以从微观角度准确预测传播趋势,并且可以促进对许多微观疾病传播因素(例如,不可步行区域和设施布局)的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/9095069/41c7f3d23f37/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验