Suppr超能文献

植物发育中的 DNA 胞嘧啶甲基化。

DNA cytosine methylation in plant development.

机构信息

Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.

出版信息

J Genet Genomics. 2010 Jan;37(1):1-12. doi: 10.1016/S1673-8527(09)60020-5.

Abstract

Cytosine bases of the nuclear genome in higher plants are often extensively methylated. Cytosine methylation has been implicated in the silencing of both transposable elements (TEs) and endogenous genes, and loss of methylation may have severe functional consequences. The recent methylation profiling of the entire Arabidopsis genome has provided novel insights into the extent and pattern of cytosine methylation and its relationships with gene activity. In addition, the fresh studies also revealed the more dynamic nature of this epigenetic modification across plant development than previously believed. Cytosine methylation of gene promoter regions usually inhibits transcription, but methylation in coding regions (gene-body methylation) does not generally affect gene expression. Active demethylation (though probably act synergistically with passive loss of methylation) of promoters by the 5-methyl cytosine DNA glycosylase or DEMETER (DME) is required for the uni-parental expression of imprinting genes in endosperm, which is essential for seed viability. The opinion that cytosine methylation is indispensible for normal plant development has been reinforced by using single or combinations of diverse loss-of-function mutants for DNA methyltransferases, DNA glycosylases, components involved in siRNA biogenesis and chromatin remodeling factors. Patterns of cytosine methylation in plants are usually faithfully maintained across organismal generations by the concerted action of epigenetic inheritance and progressive correction of strayed patterns. However, some variant methylation patterns may escape from being corrected and hence produce novel epialleles in the affected somatic cells. This, coupled with the unique property of plants to produce germline cells late during development, may enable the newly acquired epialleles to be inherited to future generations, which if visible to selection may contribute to adaptation and evolution.

摘要

高等植物的核基因组中的胞嘧啶碱基经常被广泛甲基化。胞嘧啶甲基化与转座元件(TEs)和内源性基因的沉默有关,而甲基化的丧失可能会产生严重的功能后果。最近对整个拟南芥基因组的甲基化分析为深入了解胞嘧啶甲基化的程度和模式及其与基因活性的关系提供了新的见解。此外,新的研究还揭示了这种表观遗传修饰在植物发育过程中的动态性质比以前认为的更为复杂。基因启动子区域的胞嘧啶甲基化通常会抑制转录,但编码区(基因体甲基化)的甲基化通常不会影响基因表达。5-甲基胞嘧啶 DNA 糖苷酶或 DEMETER(DME)通过主动去甲基化(尽管可能与被动丧失甲基化协同作用)来使印迹基因在胚乳中单亲表达,这对于种子活力是必不可少的。通过使用单个或多种 DNA 甲基转移酶、DNA 糖苷酶、参与 siRNA 生物发生和染色质重塑因子的功能丧失突变体,人们认为胞嘧啶甲基化对于正常的植物发育是必不可少的,这一观点得到了加强。植物中的胞嘧啶甲基化模式通常通过表观遗传遗传和对偏离模式的渐进性校正的协同作用在生物体世代中得到忠实的维持。然而,一些变异的甲基化模式可能逃脱校正,从而在受影响的体细胞中产生新的表观等位基因。这一点,加上植物在发育后期产生生殖细胞的独特特性,可能使新获得的表观等位基因能够遗传给后代,如果对选择可见,可能有助于适应和进化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验