134 Mugar Hall, Department of Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA.
Appl Environ Microbiol. 2010 Apr;76(8):2445-50. doi: 10.1128/AEM.01754-09. Epub 2010 Feb 19.
One of the oldest unresolved microbiological phenomena is why only a small fraction of the diverse microbiological population grows on artificial media. The "uncultivable" microbial majority arguably represents our planet's largest unexplored pool of biological and chemical novelty. Previously we showed that species from this pool could be grown inside diffusion chambers incubated in situ, likely because diffusion provides microorganisms with their naturally occurring growth factors. Here we utilize this approach and develop a novel high-throughput platform for parallel cultivation and isolation of previously uncultivated microbial species from a variety of environments. We have designed and tested an isolation chip (ichip) composed of several hundred miniature diffusion chambers, each inoculated with a single environmental cell. We show that microbial recovery in the ichip exceeds manyfold that afforded by standard cultivation, and the grown species are of significant phylogenetic novelty. The new method allows access to a large and diverse array of previously inaccessible microorganisms and is well suited for both fundamental and applied research.
一个最古老的未解决的微生物学现象是,为什么只有一小部分多样化的微生物群体在人工培养基上生长。可以说,“不可培养的”微生物大部分代表了我们星球上最大的未开发的生物和化学新颖性的宝库。此前我们表明,来自该库的物种可以在原位孵育的扩散室中生长,这可能是因为扩散为微生物提供了其自然存在的生长因子。在这里,我们利用这种方法,并开发了一种新颖的高通量平台,用于从各种环境中平行培养和分离以前未培养的微生物物种。我们设计并测试了一种由几百个微型扩散室组成的分离芯片(ichip),每个扩散室中接种有一个单一的环境细胞。我们表明,ichip 中的微生物回收量是标准培养的数倍以上,并且生长的物种具有显著的系统发育新颖性。新方法可以接触到大量以前无法接触到的多样化微生物,非常适合基础研究和应用研究。