Suppr超能文献

用于在宽视场范围内测量眼睛的扫描夏克-哈特曼像差仪的设计与验证。

Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view.

作者信息

Wei Xin, Thibos Larry

机构信息

School of Optometry, Indiana University, Bloomington, Indiana 47405, USA.

出版信息

Opt Express. 2010 Jan 18;18(2):1134-43. doi: 10.1364/OE.18.001134.

Abstract

Peripheral vision and off-axis aberrations not only play an important role in daily visual tasks but may also influence eye growth and refractive development. Thus it is important to measure off-axis wavefront aberrations of human eyes objectively. To achieve efficient measurement, we incorporated a double-pass scanning system with a Shack Hartmann wavefront sensor (SHWS) to develop a scanning Shack Hartmann aberrometer (SSHA). The prototype SSHA successfully measured the off-axis wavefront aberrations over +/- 15 degree visual field within 7 seconds. In two validation experiments with a wide angle model eye, it measured change in defocus aberration accurately (<0.02microm, 4mm pupil) and precisely (<0.03microm, 4mm pupil). A preliminary experiment with a human subject suggests its feasibility in clinical applications.

摘要

周边视觉和离轴像差不仅在日常视觉任务中起着重要作用,还可能影响眼睛的生长和屈光发育。因此,客观测量人眼的离轴波前像差非常重要。为了实现高效测量,我们将双程扫描系统与夏克-哈特曼波前传感器(SHWS)相结合,开发了一种扫描夏克-哈特曼像差仪(SSHA)。该SSHA原型在7秒内成功测量了±15度视野范围内的离轴波前像差。在对广角模型眼进行的两项验证实验中,它准确地(<0.02微米,4毫米瞳孔)且精确地(<0.03微米,4毫米瞳孔)测量了散焦像差的变化。一项针对人类受试者的初步实验表明了其在临床应用中的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c636/3369549/ff89400d78a9/oe-18-2-1134-g001.jpg

相似文献

2
Measuring ocular aberrations and image quality in peripheral vision with a clinical wavefront aberrometer.
Clin Exp Optom. 2009 May;92(3):212-22. doi: 10.1111/j.1444-0938.2009.00376.x.
4
Validation of a Clinical Aberrometer Using Pyramidal Wavefront Sensing.
Optom Vis Sci. 2019 Oct;96(10):733-744. doi: 10.1097/OPX.0000000000001435.
5
Experimental investigation of accommodation in eyes fit with multifocal contact lenses using a clinical auto-refractor.
Ophthalmic Physiol Opt. 2018 Mar;38(2):152-163. doi: 10.1111/opo.12438. Epub 2018 Jan 8.
6
Systematic error of a large dynamic range aberrometer.
Appl Opt. 2009 Nov 10;48(32):6376-80. doi: 10.1364/AO.48.006376.
7
Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes.
J Biomed Opt. 2006 May-Jun;11(3):30502. doi: 10.1117/1.2197860.
8
Serial measurements of accommodation by open-field Hartmann-Shack wavefront aberrometer in eyes with accommodative spasm.
Jpn J Ophthalmol. 2012 Nov;56(6):617-23. doi: 10.1007/s10384-012-0187-7. Epub 2012 Sep 26.
9
Validation of a clinical Shack-Hartmann aberrometer.
Optom Vis Sci. 2003 Aug;80(8):587-95. doi: 10.1097/00006324-200308000-00013.
10
Design and validity of a miniaturized open-field aberrometer.
J Cataract Refract Surg. 2013 Jan;39(1):36-40. doi: 10.1016/j.jcrs.2012.08.052. Epub 2012 Oct 27.

引用本文的文献

1
Experimental and modeling analysis of lenses with concentric cylindrical annular refractive elements: impact on peripheral imaging.
Biomed Opt Express. 2025 Mar 7;16(4):1344-1358. doi: 10.1364/BOE.546942. eCollection 2025 Apr 1.
3
Widefield wavefront sensor for multidirectional peripheral retinal scanning.
Biomed Opt Express. 2023 Jul 20;14(8):4190-4204. doi: 10.1364/BOE.491412. eCollection 2023 Aug 1.
4
Comparison of wavefront aberrations in the object and image spaces using wide-field individual eye models.
Biomed Opt Express. 2022 Aug 25;13(9):4939-4953. doi: 10.1364/BOE.464781. eCollection 2022 Sep 1.
5
Instrument for fast whole-field peripheral refraction in the human eye.
Biomed Opt Express. 2022 Apr 21;13(5):2947-2959. doi: 10.1364/BOE.457686. eCollection 2022 May 1.
6
Comparison of an open view autorefractor with an open view aberrometer in determining peripheral refraction in children.
J Optom. 2023 Jan-Mar;16(1):20-29. doi: 10.1016/j.optom.2021.12.002. Epub 2022 Jan 10.
7
Dual-angle open field wavefront sensor for simultaneous measurements of the central and peripheral human eye.
Biomed Opt Express. 2020 May 18;11(6):3125-3138. doi: 10.1364/BOE.391548. eCollection 2020 Jun 1.
9
Peripheral refraction and higher-order aberrations with cycloplegia and fogging lenses using the BHVI-EyeMapper.
J Optom. 2016 Jan-Mar;9(1):5-12. doi: 10.1016/j.optom.2015.06.003. Epub 2015 Jul 17.

本文引用的文献

1
Modal estimation of wavefront phase from slopes over elliptical pupils.
Optom Vis Sci. 2010 Oct;87(10):E767-77. doi: 10.1097/OPX.0b013e3181f36350.
2
Validation of a Hartmann-Moiré wavefront sensor with large dynamic range.
Opt Express. 2009 Aug 3;17(16):14180-5. doi: 10.1364/oe.17.014180.
3
Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys.
Invest Ophthalmol Vis Sci. 2009 Nov;50(11):5057-69. doi: 10.1167/iovs.08-3232. Epub 2009 Jun 3.
4
Modeling the eye's optical system by ocular wavefront tomography.
Opt Express. 2008 Dec 8;16(25):20490-502. doi: 10.1364/oe.16.020490.
5
Validation of an off-eye contact lens Shack-Hartmann wavefront aberrometer.
Optom Vis Sci. 2008 Sep;85(9):E817-28. doi: 10.1097/OPX.0b013e318185280e.
6
Traffic gap judgment in people with significant peripheral field loss.
Optom Vis Sci. 2008 Jan;85(1):26-36. doi: 10.1097/OPX.0b013e31815ed6fd.
7
Laser ray-tracing method for optical testing.
Opt Lett. 1999 Jul 15;24(14):951-3. doi: 10.1364/ol.24.000951.
8
Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry.
J Opt Soc Am A Opt Image Sci Vis. 2007 Sep;24(9):2963-73. doi: 10.1364/josaa.24.002963.
9
[Visual field and road traffic. How does peripheral vision function?].
Ophthalmologe. 2006 May;103(5):373-81. doi: 10.1007/s00347-005-1268-5.
10
Peripheral vision can influence eye growth and refractive development in infant monkeys.
Invest Ophthalmol Vis Sci. 2005 Nov;46(11):3965-72. doi: 10.1167/iovs.05-0445.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验