Suppr超能文献

3T 下膝关节软骨-骨连接的超短回波时间 MR 成像:对产生信号强度的解剖结构的识别。

Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity.

机构信息

Departments of Radiology and Bioengineering and Department of Radiology, Rady Children's Hospital, University of California-San Diego, 200 W Arbor Dr, San Diego, CA 92103, USA.

出版信息

Radiology. 2010 Mar;254(3):837-45. doi: 10.1148/radiol.09081743.

Abstract

PURPOSE

To image cartilage-bone interfaces in naturally occurring and experimentally prepared human cartilage-bone specimens at 3 T by using ultrashort echo time (TE) (UTE) and conventional pulse sequences to (a) determine the appearance of the signal intensity patterns and (b) identify the structures contributing to signal intensity on the UTE MR images.

MATERIALS AND METHODS

This study was exempted by the institutional review board, and informed consent was not required. Five cadaveric (mean age, 86 years +/- 4) patellae were imaged by using proton density-weighted fat-suppressed (repetition time msec/TE msec, 2300/34), T1-weighted (700/10), and UTE (300/0.008, 6.6, with or without dual-inversion preparations at inversion time 1 = 135 msec and inversion time 2 = 95 msec) sequences. The UTE images were compared with proton density-weighted fat-suppressed and T1-weighted images and were evaluated by two radiologists. To identify the sources of signal on the UTE images, samples including specific combinations of tissues (uncalcified cartilage [UCC] only, calcified cartilage [CC] and subchondral bone [bone] [CC/bone], bone only; and UCC, CC, and bone [UCC/CC/bone]) were prepared and imaged by using the UTE sequence.

RESULTS

On the UTE MR images, all patellar sections exhibited a high-intensity linear signal near the osteochondral junction, which was not visible on protein density-weighted fat-suppressed or T1-weighted images. In some sections, focal regions of thickened or diminished signal intensity were also found. In the prepared samples, UCC only, CC/bone, and UCC/CC/bone samples exhibited high signal intensity on the UTE images, whereas bone-only samples did not.

CONCLUSION

These results show that the high signal intensity on UTE images of human articular joints originates from the CC and the deepest layer of the UCC, without a definite contribution from subchondral bone. UTE sequences may provide a way of evaluating abnormalities at or near the osteochondral junction. (c) RSNA, 2010.

摘要

目的

通过使用超短回波时间(UTE)和常规脉冲序列,对自然发生和实验制备的人软骨-骨标本的软骨-骨界面进行成像,以(a)确定信号强度模式的外观,以及(b)确定在 UTE MR 图像上产生信号强度的结构。

材料和方法

本研究获得了机构审查委员会的豁免,并且不需要获得知情同意。对 5 个尸体(平均年龄 86 岁 +/- 4 岁)的髌骨进行了质子密度加权脂肪抑制(重复时间毫秒/TE 毫秒,2300/34)、T1 加权(700/10)和 UTE(300/0.008,6.6,带有或不带有反转时间 1 = 135 毫秒和反转时间 2 = 95 毫秒的双反转准备)序列成像。将 UTE 图像与质子密度加权脂肪抑制和 T1 加权图像进行比较,并由两位放射科医生进行评估。为了确定 UTE 图像上信号的来源,制备了包括组织的特定组合(仅未钙化软骨[UCC]、钙化软骨[CC]和软骨下骨[骨][CC/骨]、仅骨;以及 UCC、CC 和骨[UCC/CC/骨])的样本,并使用 UTE 序列对其进行了成像。

结果

在 UTE MR 图像上,所有髌骨切片在软骨-骨交界处附近均显示高强度线性信号,而在质子密度加权脂肪抑制或 T1 加权图像上则不可见。在一些切片中,还发现了局部区域的信号强度增厚或减弱。在制备的样本中,仅 UCC、CC/骨和 UCC/CC/骨样本在 UTE 图像上显示出高信号强度,而仅骨样本则没有。

结论

这些结果表明,人关节的 UTE 图像上的高信号强度源自 CC 和 UCC 的最深层,而软骨下骨没有明确的贡献。UTE 序列可能为评估软骨-骨交界处或其附近的异常提供一种方法。(c)RSNA,2010 年。

相似文献

2
Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging.
Radiology. 2013 Feb;266(2):564-74. doi: 10.1148/radiol.12121181. Epub 2012 Nov 28.
3
Knee osteochondral junction imaging using a fast 3D T-weighted ultrashort echo time cones sequence at 3T.
Magn Reson Imaging. 2020 Nov;73:76-83. doi: 10.1016/j.mri.2020.08.003. Epub 2020 Aug 21.
7
Weighted subtraction in 3D ultrashort echo time (UTE) imaging for visualization of short T2 tissues of the knee.
Acta Radiol. 2014 May;55(4):454-61. doi: 10.1177/0284185113496994. Epub 2013 Aug 10.
8
Feasibility of an Inversion Recovery-Prepared Fat-Saturated Zero Echo Time Sequence for High Contrast Imaging of the Osteochondral Junction.
Front Endocrinol (Lausanne). 2021 Dec 24;12:777080. doi: 10.3389/fendo.2021.777080. eCollection 2021.
9
Magnetic resonance imaging (MRI) of articular cartilage of the knee using ultrashort echo time (uTE) sequences with spiral acquisition.
J Med Imaging Radiat Oncol. 2012 Jun;56(3):318-23. doi: 10.1111/j.1754-9485.2012.02388.x. Epub 2012 May 25.

引用本文的文献

2
Novel fat suppression technique for ultrashort echo time MRI using single-point Dixon phase modeling.
Quant Imaging Med Surg. 2025 May 1;15(5):4580-4591. doi: 10.21037/qims-24-1998. Epub 2025 Apr 10.
4
UTE MRI technical developments and applications in osteoporosis: a review.
Front Endocrinol (Lausanne). 2025 Feb 6;16:1510010. doi: 10.3389/fendo.2025.1510010. eCollection 2025.
5
Utility of Zero Echo Time MRI for the Diagnosis and Characterization of Ankle Fractures.
HSS J. 2024 Nov;20(4):502-507. doi: 10.1177/15563316231187383. Epub 2023 Aug 15.
6
Quantitative ultrashort echo time MR imaging of knee osteochondral junction: An ex vivo feasibility study.
NMR Biomed. 2024 Dec;37(12):e5253. doi: 10.1002/nbm.5253. Epub 2024 Aug 28.
7
Ultrashort echo time pulse sequences for visualization of deep peripheral fasciae and epimysium in porcine models with histologic correlations.
Quant Imaging Med Surg. 2023 Dec 1;13(12):8447-8461. doi: 10.21037/qims-23-687. Epub 2023 Oct 11.
8
Ultra-Short Echo Time-MRI T2* Mapping of Articular Cartilage Layers Is Associated with Histological Early Degeneration.
Cartilage. 2025 Mar;16(1):118-124. doi: 10.1177/19476035231205685. Epub 2023 Oct 16.
9
3D T1rho sequences with FASE, UTE, and MAPSS acquisitions for knee evaluation.
Jpn J Radiol. 2023 Nov;41(11):1308-1315. doi: 10.1007/s11604-023-01453-8. Epub 2023 May 29.

本文引用的文献

3
Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique.
J Bone Joint Surg Am. 2006 Sep;88 Suppl 1 Pt 2:294-304. doi: 10.2106/JBJS.F.00292.
4
Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses.
Am J Sports Med. 2006 Nov;34(11):1824-31. doi: 10.1177/0363546506289882. Epub 2006 Jul 10.
5
The tidemark of the chondro-osseous junction of the normal human knee joint.
J Mol Histol. 2005 Mar;36(3):207-15. doi: 10.1007/s10735-005-3283-x.
6
Magnetic resonance imaging of the knee with ultrashort TE pulse sequences.
Magn Reson Imaging. 2004 Oct;22(8):1061-7. doi: 10.1016/j.mri.2004.08.018.
7
Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis.
Osteoarthritis Cartilage. 2004;12 Suppl A:S20-30. doi: 10.1016/j.joca.2003.09.016.
8
Magnetic resonance: an introduction to ultrashort TE (UTE) imaging.
J Comput Assist Tomogr. 2003 Nov-Dec;27(6):825-46. doi: 10.1097/00004728-200311000-00001.
9
Magnetic resonance imaging of short T2 components in tissue.
Clin Radiol. 2003 Jan;58(1):1-19. doi: 10.1053/crad.2003.1157.
10
Quantitative structural organization of normal adult human articular cartilage.
Osteoarthritis Cartilage. 2002 Jul;10(7):564-72. doi: 10.1053/joca.2002.0814.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验