Suppr超能文献

肝糖原合酶敲除小鼠葡萄糖耐量受损和空腹易感性。

Impaired glucose tolerance and predisposition to the fasted state in liver glycogen synthase knock-out mice.

机构信息

Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.

出版信息

J Biol Chem. 2010 Apr 23;285(17):12851-61. doi: 10.1074/jbc.M110.106534. Epub 2010 Feb 23.

Abstract

Conversion to glycogen is a major fate of ingested glucose in the body. A rate-limiting enzyme in the synthesis of glycogen is glycogen synthase encoded by two genes, GYS1, expressed in muscle and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase). Defects in GYS2 cause the inherited monogenic disease glycogen storage disease 0. We have generated mice with a liver-specific disruption of the Gys2 gene (liver glycogen synthase knock-out (LGSKO) mice), using Lox-P/Cre technology. Conditional mice carrying floxed Gys2 were crossed with mice expressing Cre recombinase under the albumin promoter. The resulting LGSKO mice are viable, develop liver glycogen synthase deficiency, and have a 95% reduction in fed liver glycogen content. They have mild hypoglycemia but dispose glucose less well in a glucose tolerance test. Fed, LGSKO mice also have a reduced capacity for exhaustive exercise compared with mice carrying floxed alleles, but the difference disappears after an overnight fast. Upon fasting, LGSKO mice reach within 4 h decreased blood glucose levels attained by control floxed mice only after 24 h of food deprivation. The LGSKO mice maintain this low blood glucose for at least 24 h. Basal gluconeogenesis is increased in LGSKO mice, and insulin suppression of endogenous glucose production is impaired as assessed by euglycemic-hyperinsulinemic clamp. This observation correlates with an increase in the liver gluconeogenic enzyme phosphoenolpyruvate carboxykinase expression and activity. This mouse model mimics the pathophysiology of glycogen storage disease 0 patients and highlights the importance of liver glycogen stores in whole body glucose homeostasis.

摘要

摄入葡萄糖在体内主要转化为糖原。糖原合成的限速酶是由两个基因编码的糖原合酶,GYS1 在肌肉和其他组织中表达,GYS2 主要在肝脏中表达(肝糖原合酶)。GYS2 缺陷导致遗传性单基因疾病糖原贮积症 0。我们使用 Lox-P/Cre 技术,在肝脏中特异性敲除 Gys2 基因(肝糖原合酶敲除(LGSKO)小鼠)生成了小鼠。带有 floxed Gys2 的条件性小鼠与在白蛋白启动子下表达 Cre 重组酶的小鼠交配。所得 LGSKO 小鼠具有活力,表现出肝糖原合酶缺乏,并表现出喂养时肝糖原含量降低 95%。它们有轻度低血糖症,但在葡萄糖耐量试验中葡萄糖的处理能力较差。在喂养时,LGSKO 小鼠与携带 floxed 等位基因的小鼠相比,进行剧烈运动的能力降低,但在禁食一夜后这种差异消失。禁食后,LGSKO 小鼠在 4 小时内达到与对照 floxed 小鼠相同的低血糖水平,而对照 floxed 小鼠在禁食 24 小时后才达到这种水平。LGSKO 小鼠至少在 24 小时内保持这种低血糖水平。LGSKO 小鼠的基础糖异生增加,并且通过正葡萄糖-高胰岛素钳夹评估,胰岛素对内源性葡萄糖产生的抑制受损。这一观察结果与肝糖异生酶磷酸烯醇丙酮酸羧激酶表达和活性的增加相关。这种小鼠模型模拟了糖原贮积症 0 患者的病理生理学,并强调了肝脏糖原储存对全身葡萄糖稳态的重要性。

相似文献

1
Impaired glucose tolerance and predisposition to the fasted state in liver glycogen synthase knock-out mice.
J Biol Chem. 2010 Apr 23;285(17):12851-61. doi: 10.1074/jbc.M110.106534. Epub 2010 Feb 23.
5
Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.
J Biol Chem. 2017 Jun 23;292(25):10455-10464. doi: 10.1074/jbc.M117.786525. Epub 2017 May 8.
6
Recurrent hypoglycemia increases hepatic gluconeogenesis without affecting glycogen metabolism or systemic lipolysis in rat.
Metabolism. 2022 Nov;136:155310. doi: 10.1016/j.metabol.2022.155310. Epub 2022 Sep 3.
7
Hypoglycemia with enhanced hepatic glycogen synthesis in recombinant mice lacking hexose-6-phosphate dehydrogenase.
Endocrinology. 2007 Dec;148(12):6100-6. doi: 10.1210/en.2007-0963. Epub 2007 Sep 6.
8
The variable clinical phenotype of three patients with hepatic glycogen synthase deficiency.
J Pediatr Endocrinol Metab. 2017 Apr 1;30(4):459-462. doi: 10.1515/jpem-2016-0317.
9
Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis.
Diabetes. 2013 Dec;62(12):4070-82. doi: 10.2337/db13-0880. Epub 2013 Aug 29.

引用本文的文献

1
Fasting-Induced Hepatic Gluconeogenesis Is Compromised In Anxa6 Mice.
J Cell Physiol. 2025 Aug;240(8):e70084. doi: 10.1002/jcp.70084.
2
Hepatic glycogen directly regulates gluconeogenesis through an AMPK/CRTC2 axis in mice.
J Clin Invest. 2025 Jun 2;135(11). doi: 10.1172/JCI188363.
3
is a metabolic switch that shifts hepatic energy storage from lipid to glycogen.
Sci Adv. 2025 May 16;11(20):eado3440. doi: 10.1126/sciadv.ado3440.
5
Neuron-astrocyte metabolic coupling facilitates spinal plasticity and maintenance of inflammatory pain.
Nat Metab. 2024 Mar;6(3):494-513. doi: 10.1038/s42255-024-01001-2. Epub 2024 Mar 5.
6
Microbiota influences host exercise capacity via modulation of skeletal muscle glucose metabolism in mice.
Exp Mol Med. 2023 Aug;55(8):1820-1830. doi: 10.1038/s12276-023-01063-4. Epub 2023 Aug 4.
7
Dendropanoxide Alleviates Thioacetamide-induced Hepatic Fibrosis via Inhibition of ROS Production and Inflammation in BALB/ Mice.
Int J Biol Sci. 2023 May 11;19(9):2630-2647. doi: 10.7150/ijbs.80743. eCollection 2023.
10
Disrupting AMPK-Glycogen Binding in Mice Increases Carbohydrate Utilization and Reduces Exercise Capacity.
Front Physiol. 2022 Mar 22;13:859246. doi: 10.3389/fphys.2022.859246. eCollection 2022.

本文引用的文献

1
Hepatic triacylglycerol accumulation and insulin resistance.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S74-9. doi: 10.1194/jlr.R800053-JLR200. Epub 2008 Nov 6.
3
Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function.
Genes Dev. 2007 Aug 1;21(15):1833-56. doi: 10.1101/gad.1566807.
4
Glycogen storage diseases: new perspectives.
World J Gastroenterol. 2007 May 14;13(18):2541-53. doi: 10.3748/wjg.v13.i18.2541.
5
Splanchnic regulation of glucose production.
Annu Rev Nutr. 2007;27:329-45. doi: 10.1146/annurev.nutr.27.061406.093806.
6
Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders.
J Physiol. 2006 Jul 1;574(Pt 1):41-53. doi: 10.1113/jphysiol.2006.108506. Epub 2006 Apr 27.
7
PGC-1 coactivators: inducible regulators of energy metabolism in health and disease.
J Clin Invest. 2006 Mar;116(3):615-22. doi: 10.1172/JCI27794.
8
AMPK: a key sensor of fuel and energy status in skeletal muscle.
Physiology (Bethesda). 2006 Feb;21:48-60. doi: 10.1152/physiol.00044.2005.
9
Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse.
Diabetes. 2006 Feb;55(2):390-7. doi: 10.2337/diabetes.55.02.06.db05-0686.
10
Gene expression profiling of mice with genetically modified muscle glycogen content.
Biochem J. 2006 Apr 1;395(1):137-45. doi: 10.1042/BJ20051456.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验