Guo Min, Shapiro Ryan, Schimmel Paul, Yang Xiang-Lei
The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
Acta Crystallogr D Biol Crystallogr. 2010 Mar;66(Pt 3):243-50. doi: 10.1107/S0907444909055462. Epub 2010 Feb 12.
Although Escherichia coli alanyl-tRNA synthetase was among the first tRNA synthetases to be sequenced and extensively studied by functional analysis, it has proved to be recalcitrant to crystallization. This challenge remained even for crystallization of the catalytic fragment. By mutationally introducing three stacked leucines onto the solvent-exposed side of an alpha-helix, an engineered catalytic fragment of the synthetase was obtained that yielded multiple high-quality crystals and cocrystals with different ligands. The engineered alpha-helix did not form a leucine zipper that interlocked with the same alpha-helix from another molecule. Instead, using the created hydrophobic spine, it interacted with other surfaces of the protein as a leucine half-zipper (LHZ) to enhance the crystal lattice interactions. The LHZ made crystal lattice contacts in all crystals of different space groups. These results illustrate the power of introducing an LHZ into helices to facilitate crystallization. The authors propose that the method can be unified with surface-entropy reduction and can be broadly used for protein-surface optimization in crystallization.
尽管大肠杆菌丙氨酰 - tRNA合成酶是最早进行测序并通过功能分析进行广泛研究的tRNA合成酶之一,但事实证明它难以结晶。即使是催化片段的结晶也面临这一挑战。通过在α - 螺旋暴露于溶剂的一侧突变引入三个堆叠的亮氨酸,获得了该合成酶的工程化催化片段,它产生了多个高质量的晶体以及与不同配体的共晶体。工程化的α - 螺旋并未形成与另一个分子的相同α - 螺旋互锁的亮氨酸拉链。相反,利用创建的疏水脊,它作为亮氨酸半拉链(LHZ)与蛋白质的其他表面相互作用,以增强晶格相互作用。LHZ在不同空间群的所有晶体中都形成了晶格接触。这些结果说明了将LHZ引入螺旋以促进结晶的作用。作者提出该方法可以与表面熵降低方法相结合,并可广泛用于结晶过程中的蛋白质表面优化。