Suppr超能文献

通过无框架事件驱动传感和卷积处理实现快速视觉:应用于纹理识别

Fast vision through frameless event-based sensing and convolutional processing: application to texture recognition.

作者信息

Perez-Carrasco Jose Antonio, Acha Begona, Serrano Carmen, Camunas-Mesa Luis, Serrano-Gotarredona Teresa, Linares-Barranco Bernabe

机构信息

Dpto. Teoría de la Señal, ETSIT, Universidadde Sevilla, Sevilla, Spain.

出版信息

IEEE Trans Neural Netw. 2010 Apr;21(4):609-20. doi: 10.1109/TNN.2009.2039943. Epub 2010 Feb 22.

Abstract

Address-event representation (AER) is an emergent hardware technology which shows a high potential for providing in the near future a solid technological substrate for emulating brain-like processing structures. When used for vision, AER sensors and processors are not restricted to capturing and processing still image frames, as in commercial frame-based video technology, but sense and process visual information in a pixel-level event-based frameless manner. As a result, vision processing is practically simultaneous to vision sensing, since there is no need to wait for sensing full frames. Also, only meaningful information is sensed, communicated, and processed. Of special interest for brain-like vision processing are some already reported AER convolutional chips, which have revealed a very high computational throughput as well as the possibility of assembling large convolutional neural networks in a modular fashion. It is expected that in a near future we may witness the appearance of large scale convolutional neural networks with hundreds or thousands of individual modules. In the meantime, some research is needed to investigate how to assemble and configure such large scale convolutional networks for specific applications. In this paper, we analyze AER spiking convolutional neural networks for texture recognition hardware applications. Based on the performance figures of already available individual AER convolution chips, we emulate large scale networks using a custom made event-based behavioral simulator. We have developed a new event-based processing architecture that emulates with AER hardware Manjunath's frame-based feature recognition software algorithm, and have analyzed its performance using our behavioral simulator. Recognition rate performance is not degraded. However, regarding speed, we show that recognition can be achieved before an equivalent frame is fully sensed and transmitted.

摘要

地址事件表示(AER)是一种新兴的硬件技术,在不久的将来,它极有可能为模拟类脑处理结构提供坚实的技术基础。当用于视觉时,AER传感器和处理器并不局限于像商用基于帧的视频技术那样捕获和处理静止图像帧,而是以基于像素级事件的无帧方式感知和处理视觉信息。因此,视觉处理实际上与视觉感知同时进行,因为无需等待完整帧的感知。此外,仅感知、传递和处理有意义的信息。一些已报道的AER卷积芯片对于类脑视觉处理特别有意义,这些芯片展现出非常高的计算吞吐量以及以模块化方式组装大型卷积神经网络的可能性。预计在不久的将来,我们可能会看到具有数百或数千个独立模块的大规模卷积神经网络出现。与此同时,需要进行一些研究来探讨如何针对特定应用组装和配置这种大规模卷积网络。在本文中,我们分析用于纹理识别硬件应用的AER脉冲卷积神经网络。基于已有单个AER卷积芯片的性能数据,我们使用定制的基于事件的行为模拟器来模拟大规模网络。我们开发了一种新的基于事件的处理架构,该架构使用AER硬件模拟Manjunath基于帧的特征识别软件算法,并使用我们的行为模拟器分析了其性能。识别率性能并未降低。然而,在速度方面,我们表明在等效帧被完全感知和传输之前就能实现识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验