Suppr超能文献

扑克动态视觉传感器数据集(Poker-DVS)和MNIST动态视觉传感器数据集(MNIST-DVS)。它们的历史、创建方式及其他细节。

Poker-DVS and MNIST-DVS. Their History, How They Were Made, and Other Details.

作者信息

Serrano-Gotarredona Teresa, Linares-Barranco Bernabé

机构信息

Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla Sevilla, Spain.

出版信息

Front Neurosci. 2015 Dec 22;9:481. doi: 10.3389/fnins.2015.00481. eCollection 2015.

Abstract

This article reports on two databases for event-driven object recognition using a Dynamic Vision Sensor (DVS). The first, which we call Poker-DVS and is being released together with this article, was obtained by browsing specially made poker card decks in front of a DVS camera for 2-4 s. Each card appeared on the screen for about 20-30 ms. The poker pips were tracked and isolated off-line to constitute the 131-recording Poker-DVS database. The second database, which we call MNIST-DVS and which was released in December 2013, consists of a set of 30,000 DVS camera recordings obtained by displaying 10,000 moving symbols from the standard MNIST 70,000-picture database on an LCD monitor for about 2-3 s each. Each of the 10,000 symbols was displayed at three different scales, so that event-driven object recognition algorithms could easily be tested for different object sizes. This article tells the story behind both databases, covering, among other aspects, details of how they work and the reasons for their creation. We provide not only the databases with corresponding scripts, but also the scripts and data used to generate the figures shown in this article (as Supplementary Material).

摘要

本文报道了两个用于使用动态视觉传感器(DVS)进行事件驱动目标识别的数据库。第一个数据库,我们称之为扑克-DVS,与本文一同发布,它是通过在DVS相机前浏览特制的扑克牌组2至4秒获得的。每张牌在屏幕上出现约20至30毫秒。扑克点数经过离线跟踪和分离,构成了包含131条记录的扑克-DVS数据库。第二个数据库,我们称之为MNIST-DVS,于2013年12月发布,它由一组30000条DVS相机记录组成,这些记录是通过在液晶显示器上每次显示约2至3秒来自标准MNIST 70000图像数据库中的10000个移动符号获得的。10000个符号中的每一个都以三种不同比例显示,以便可以轻松测试事件驱动目标识别算法对不同物体大小的性能。本文讲述了这两个数据库背后的故事,涵盖了它们的工作方式细节以及创建原因等多个方面。我们不仅提供了带有相应脚本的数据库,还提供了用于生成本文所示图形的脚本和数据(作为补充材料)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/665e/4686704/640aef07d9cd/fnins-09-00481-g0001.jpg

相似文献

1
Poker-DVS and MNIST-DVS. Their History, How They Were Made, and Other Details.
Front Neurosci. 2015 Dec 22;9:481. doi: 10.3389/fnins.2015.00481. eCollection 2015.
3
An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.
Front Neurosci. 2017 Jun 28;11:350. doi: 10.3389/fnins.2017.00350. eCollection 2017.
4
CIFAR10-DVS: An Event-Stream Dataset for Object Classification.
Front Neurosci. 2017 May 30;11:309. doi: 10.3389/fnins.2017.00309. eCollection 2017.
5
Exploiting Lightweight Statistical Learning for Event-Based Vision Processing.
IEEE Access. 2018;6:19396-19406. doi: 10.1109/ACCESS.2018.2823260. Epub 2018 Apr 4.
6
7
An Event-Driven Categorization Model for AER Image Sensors Using Multispike Encoding and Learning.
IEEE Trans Neural Netw Learn Syst. 2020 Sep;31(9):3649-3657. doi: 10.1109/TNNLS.2019.2945630. Epub 2019 Nov 5.
9
Low-Latency Line Tracking Using Event-Based Dynamic Vision Sensors.
Front Neurorobot. 2018 Feb 19;12:4. doi: 10.3389/fnbot.2018.00004. eCollection 2018.
10
A robust event-driven approach to always-on object recognition.
Neural Netw. 2024 Oct;178:106415. doi: 10.1016/j.neunet.2024.106415. Epub 2024 Jun 3.

引用本文的文献

2
4
[A bio-inspired hierarchical spiking neural network with biological synaptic plasticity for event camera object recognition].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Aug 25;40(4):692-699. doi: 10.7507/1001-5515.202207040.
5
Bayesian continual learning spiking neural networks.
Front Comput Neurosci. 2022 Nov 16;16:1037976. doi: 10.3389/fncom.2022.1037976. eCollection 2022.
6
NeuroVI-based new datasets and space attention network for the recognition and falling detection of delivery packages.
Front Neurorobot. 2022 Oct 13;16:934260. doi: 10.3389/fnbot.2022.934260. eCollection 2022.
7
Neuromorphic Engineering Needs Closed-Loop Benchmarks.
Front Neurosci. 2022 Feb 14;16:813555. doi: 10.3389/fnins.2022.813555. eCollection 2022.
8
Embodied neuromorphic intelligence.
Nat Commun. 2022 Feb 23;13(1):1024. doi: 10.1038/s41467-022-28487-2.
9
Event-Based Sensing and Signal Processing in the Visual, Auditory, and Olfactory Domain: A Review.
Front Neural Circuits. 2021 May 31;15:610446. doi: 10.3389/fncir.2021.610446. eCollection 2021.

本文引用的文献

1
Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades.
Front Neurosci. 2015 Nov 16;9:437. doi: 10.3389/fnins.2015.00437. eCollection 2015.
2
HFirst: A Temporal Approach to Object Recognition.
IEEE Trans Pattern Anal Mach Intell. 2015 Oct;37(10):2028-40. doi: 10.1109/TPAMI.2015.2392947.
3
Feedforward Categorization on AER Motion Events Using Cortex-Like Features in a Spiking Neural Network.
IEEE Trans Neural Netw Learn Syst. 2015 Sep;26(9):1963-78. doi: 10.1109/TNNLS.2014.2362542. Epub 2014 Oct 22.
5
Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.
IEEE Trans Biomed Circuits Syst. 2014 Jun;8(3):345-57. doi: 10.1109/TBCAS.2013.2271382. Epub 2013 Aug 6.
6
Fast vision through frameless event-based sensing and convolutional processing: application to texture recognition.
IEEE Trans Neural Netw. 2010 Apr;21(4):609-20. doi: 10.1109/TNN.2009.2039943. Epub 2010 Feb 22.
8
Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex.
Neural Comput. 2001 Jun;13(6):1255-83. doi: 10.1162/08997660152002852.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验