Suppr超能文献

关于尖峰时间依赖可塑性、忆阻器设备以及构建自学习视觉皮层

On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex.

作者信息

Zamarreño-Ramos Carlos, Camuñas-Mesa Luis A, Pérez-Carrasco Jose A, Masquelier Timothée, Serrano-Gotarredona Teresa, Linares-Barranco Bernabé

机构信息

Mixed Signal Design, Instituto de Microelectrónica de Sevilla (IMSE-CNM-CSIC) Sevilla, Spain.

出版信息

Front Neurosci. 2011 Mar 17;5:26. doi: 10.3389/fnins.2011.00026. eCollection 2011.

Abstract

In this paper we present a very exciting overlap between emergent nanotechnology and neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking one type of memristor nanotechnology devices to the biological synaptic update rule known as spike-time-dependent-plasticity (STDP) found in real biological synapses. Understanding this link allows neuromorphic engineers to develop circuit architectures that use this type of memristors to artificially emulate parts of the visual cortex. We focus on the type of memristors referred to as voltage or flux driven memristors and focus our discussions on a behavioral macro-model for such devices. The implementations result in fully asynchronous architectures with neurons sending their action potentials not only forward but also backward. One critical aspect is to use neurons that generate spikes of specific shapes. We will see how by changing the shapes of the neuron action potential spikes we can tune and manipulate the STDP learning rules for both excitatory and inhibitory synapses. We will see how neurons and memristors can be interconnected to achieve large scale spiking learning systems, that follow a type of multiplicative STDP learning rule. We will briefly extend the architectures to use three-terminal transistors with similar memristive behavior. We will illustrate how a V1 visual cortex layer can assembled and how it is capable of learning to extract orientations from visual data coming from a real artificial CMOS spiking retina observing real life scenes. Finally, we will discuss limitations of currently available memristors. The results presented are based on behavioral simulations and do not take into account non-idealities of devices and interconnects. The aim of this paper is to present, in a tutorial manner, an initial framework for the possible development of fully asynchronous STDP learning neuromorphic architectures exploiting two or three-terminal memristive type devices. All files used for the simulations are made available through the journal web site.

摘要

在本文中,我们展示了新兴的纳米技术与神经科学之间一个非常令人兴奋的交叉领域,这是由神经形态工程师发现的。具体而言,我们正在将一种忆阻器纳米技术设备与在真实生物突触中发现的被称为尖峰时间依赖可塑性(STDP)的生物突触更新规则联系起来。理解这种联系使神经形态工程师能够开发出使用此类忆阻器来人工模拟视觉皮层部分功能的电路架构。我们专注于被称为电压或通量驱动忆阻器的这类忆阻器,并将讨论聚焦于此类设备的行为宏观模型。这些实现方式产生了完全异步的架构,其中神经元不仅向前发送动作电位,还向后发送。一个关键方面是使用能够产生特定形状尖峰的神经元。我们将看到,通过改变神经元动作电位尖峰的形状,我们如何能够调整和操纵兴奋性和抑制性突触的STDP学习规则。我们将看到神经元和忆阻器如何相互连接以实现大规模的尖峰学习系统,该系统遵循一种乘法STDP学习规则。我们将简要扩展这些架构,以使用具有类似忆阻行为的三端晶体管。我们将说明V1视觉皮层层是如何组装的,以及它如何能够从来自观察真实生活场景的真实人工CMOS尖峰视网膜的视觉数据中学习提取方向。最后,我们将讨论当前可用忆阻器的局限性。所呈现的结果基于行为模拟,并未考虑设备和互连的非理想性。本文的目的是以教程的方式呈现一个初始框架,用于可能开发利用两终端或三终端忆阻型设备的完全异步STDP学习神经形态架构。所有用于模拟的文件可通过期刊网站获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e6e/3062969/58b0b0824546/fnins-05-00026-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验