Am J Transl Res. 2010 Jan 1;2(1):43-55.
Tissue engineered skeletal muscle has tremendous potential for the treatment of muscular injury or muscular dysfunction. However, in vitro methods to generate skeletal muscle with physiologically aligned myofiber structure remains limited. To develop a robust in vitro model that resembles the physiologically aligned structure of muscle fibers, we fabricated micropatterned polymer membranes of poly(dimethylsiloxane) (PDMS) with parallel microgrooves, and then examined the effect of micropatterning on myoblast cellular organization and the cell fusion process. In comparison to the myoblasts on non-patterned PDMS films, myoblasts on micropatterned PDMS films had well-organized F-actin assembly in close proximity to the direction of microgrooves, along with enhanced levels of myotube formation at early time points. The increase of cell cycle regulator p21(WAF/Cip1) and the organized interactions of N-cadherin in myoblasts on micropatterned surfaces may contribute to the enhanced formation of myotubes. Similar results of cellular alignment was observed when myoblasts were cultured on microfluidically patterned poly(2-hydroxyethyl methacrylate) (pHEMA) microgrooves, and the micropatterns were found to detach from the Petri dish over time. To apply this technology for generating aligned tissue-like muscle constructs, we developed a methodology to transfer the aligned myotubes to biodegradable collagen gels. Histological analysis revealed the persistence of aligned cellular organization in the collagen gels. Together, these results demonstrate that micropatterned PDMS or pHEMA can promote cell alignment and fusion along the direction of the microgrooves, and this platform can be utilized to transfer aligned myotubes on biodegradable hydrogels. This study highlights the importance of spatial cues in creating aligned skeletal muscle for tissue engineering and muscular regeneration applications.
组织工程化骨骼肌在治疗肌肉损伤或肌肉功能障碍方面具有巨大的潜力。然而,目前体外生成具有生理排列肌纤维结构的骨骼肌的方法仍然有限。为了开发一种类似于肌肉纤维生理排列结构的稳健体外模型,我们制备了具有平行微槽的聚二甲基硅氧烷(PDMS)微图案聚合物膜,并研究了微图案对成肌细胞组织和细胞融合过程的影响。与非图案 PDMS 薄膜上的成肌细胞相比,微图案 PDMS 薄膜上的成肌细胞在靠近微槽方向的 F-肌动蛋白组装具有良好的组织,并且在早期时间点形成更多的肌管。细胞周期调节剂 p21(WAF/Cip1)水平的增加以及微图案表面上成肌细胞中 N-钙粘蛋白的有序相互作用可能有助于增强肌管的形成。当成肌细胞在微流控图案化的聚(2-羟乙基甲基丙烯酸酯)(pHEMA)微槽上培养时,观察到类似的细胞排列结果,并且随着时间的推移,微图案从培养皿上脱落。为了将这种技术应用于生成排列组织样肌肉构建体,我们开发了一种将排列的肌管转移到可生物降解的胶原凝胶中的方法。组织学分析显示胶原凝胶中存在排列的细胞组织。总之,这些结果表明,微图案 PDMS 或 pHEMA 可以促进细胞沿着微槽的方向排列和融合,并且该平台可用于将排列的肌管转移到可生物降解的水凝胶上。这项研究强调了在组织工程和肌肉再生应用中创建排列骨骼肌时空间线索的重要性。