Tan Yong How, Alcazar-Daleo Cynthia A, Holbrook Jonah G, Habing Krista M, Lally Owen J, Vanderpool Joshua C, Seah Theo, Liu Renee, Ahsan Rashaad, Li Leanna, Nakayama Karina H
Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA.
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
Adv Healthc Mater. 2025 Jun 18:e2501357. doi: 10.1002/adhm.202501357.
Severe skeletal muscle injuries often result in permanent functional deficits, posing a major clinical challenge; biomaterials that support cellular activity and provide instructive microenvironmental cues offer a promising strategy to enhance regeneration. To address this challenge, a novel engineering strategy is introduced to fabricate and pattern decellularized extracellular matrix (dECM) scaffolds with tunable biophysical properties. By leveraging pH-driven fibrillogenesis, combined with shear-based extrusion, controlled fibril assembly within skeletal muscle dECM, with precise topographical patterning of scaffold nanoarchitecture is demonstrated. This dual-modulation produces patterned scaffolds with compositionally mimetic ECM that direct myogenic cell alignment, influence cell phenotype, and facilitate scaffold remodeling. In a preclinical mouse model of volumetric muscle loss, these engineered dECM scaffolds promote the formation of new myofibers and enhance muscle regeneration, largely through the facilitation of scaffold and tissue remodeling for better integration. This work highlights the versatility of ECM-derived materials tailored to mimic the native composition of skeletal muscle, while also imparting new biophysical features that optimize myogenesis. By supporting tissue remodeling and functional integration, fibrillar patterned dECM represents a robust platform for advancing musculoskeletal regenerative therapies following traumatic injuries.
严重的骨骼肌损伤常导致永久性功能缺陷,这构成了一项重大的临床挑战;支持细胞活性并提供指导性微环境线索的生物材料为促进再生提供了一种有前景的策略。为应对这一挑战,引入了一种新颖的工程策略来制造具有可调生物物理特性的脱细胞细胞外基质(dECM)支架并对其进行图案化处理。通过利用pH驱动的纤维生成,结合基于剪切的挤压,在骨骼肌dECM内实现了可控的纤维组装,并展示了支架纳米结构的精确拓扑图案化。这种双重调制产生了具有组成模拟ECM的图案化支架,可引导成肌细胞排列、影响细胞表型并促进支架重塑。在容积性肌肉损失的临床前小鼠模型中,这些工程化的dECM支架主要通过促进支架和组织重塑以实现更好的整合,从而促进新肌纤维的形成并增强肌肉再生。这项工作突出了为模仿骨骼肌天然组成而定制的ECM衍生材料的多功能性,同时还赋予了优化肌生成的新生物物理特性。通过支持组织重塑和功能整合,纤维状图案化的dECM代表了一个强大的平台,可推进创伤后肌肉骨骼再生治疗。