Suppr超能文献

用于增强肌生成的去细胞骨骼肌细胞外基质的剪切诱导图案化

Shear-Induced Patterning of Decellularized Skeletal Muscle Extracellular Matrix for Enhanced Myogenesis.

作者信息

Tan Yong How, Alcazar-Daleo Cynthia A, Holbrook Jonah G, Habing Krista M, Lally Owen J, Vanderpool Joshua C, Seah Theo, Liu Renee, Ahsan Rashaad, Li Leanna, Nakayama Karina H

机构信息

Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA.

Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

出版信息

Adv Healthc Mater. 2025 Jun 18:e2501357. doi: 10.1002/adhm.202501357.

Abstract

Severe skeletal muscle injuries often result in permanent functional deficits, posing a major clinical challenge; biomaterials that support cellular activity and provide instructive microenvironmental cues offer a promising strategy to enhance regeneration. To address this challenge, a novel engineering strategy is introduced to fabricate and pattern decellularized extracellular matrix (dECM) scaffolds with tunable biophysical properties. By leveraging pH-driven fibrillogenesis, combined with shear-based extrusion, controlled fibril assembly within skeletal muscle dECM, with precise topographical patterning of scaffold nanoarchitecture is demonstrated. This dual-modulation produces patterned scaffolds with compositionally mimetic ECM that direct myogenic cell alignment, influence cell phenotype, and facilitate scaffold remodeling. In a preclinical mouse model of volumetric muscle loss, these engineered dECM scaffolds promote the formation of new myofibers and enhance muscle regeneration, largely through the facilitation of scaffold and tissue remodeling for better integration. This work highlights the versatility of ECM-derived materials tailored to mimic the native composition of skeletal muscle, while also imparting new biophysical features that optimize myogenesis. By supporting tissue remodeling and functional integration, fibrillar patterned dECM represents a robust platform for advancing musculoskeletal regenerative therapies following traumatic injuries.

摘要

严重的骨骼肌损伤常导致永久性功能缺陷,这构成了一项重大的临床挑战;支持细胞活性并提供指导性微环境线索的生物材料为促进再生提供了一种有前景的策略。为应对这一挑战,引入了一种新颖的工程策略来制造具有可调生物物理特性的脱细胞细胞外基质(dECM)支架并对其进行图案化处理。通过利用pH驱动的纤维生成,结合基于剪切的挤压,在骨骼肌dECM内实现了可控的纤维组装,并展示了支架纳米结构的精确拓扑图案化。这种双重调制产生了具有组成模拟ECM的图案化支架,可引导成肌细胞排列、影响细胞表型并促进支架重塑。在容积性肌肉损失的临床前小鼠模型中,这些工程化的dECM支架主要通过促进支架和组织重塑以实现更好的整合,从而促进新肌纤维的形成并增强肌肉再生。这项工作突出了为模仿骨骼肌天然组成而定制的ECM衍生材料的多功能性,同时还赋予了优化肌生成的新生物物理特性。通过支持组织重塑和功能整合,纤维状图案化的dECM代表了一个强大的平台,可推进创伤后肌肉骨骼再生治疗。

相似文献

1
3
Photoacoustic processing of decellularized extracellular matrix for biofabricating living constructs.
Acta Biomater. 2024 Jul 15;183:74-88. doi: 10.1016/j.actbio.2024.05.054. Epub 2024 Jun 3.
4
Macromolecular crowding-based biofabrication utilizing unmodified extracellular matrix bioinks.
Acta Biomater. 2025 May 15;198:37-48. doi: 10.1016/j.actbio.2025.02.052. Epub 2025 Apr 22.
5
Temporal Tissue Remodeling in Volumetric Muscle Injury with Endothelial Cell-Laden Patterned Nanofibrillar Constructs.
Bioengineering (Basel). 2024 Dec 14;11(12):1269. doi: 10.3390/bioengineering11121269.
7
Biomaterial-Based Regenerative Strategies for Volumetric Muscle Loss: Challenges and Solutions.
Adv Wound Care (New Rochelle). 2025 Mar;14(3):159-175. doi: 10.1089/wound.2024.0079. Epub 2024 Jul 10.
9
Corneal Endothelium Regeneration with Decellularized Porcine Corneal Extracellular Matrix Scaffolds.
Tissue Eng Regen Med. 2025 Jul;22(5):735-746. doi: 10.1007/s13770-025-00734-9. Epub 2025 Jun 19.

本文引用的文献

1
Temporal Tissue Remodeling in Volumetric Muscle Injury with Endothelial Cell-Laden Patterned Nanofibrillar Constructs.
Bioengineering (Basel). 2024 Dec 14;11(12):1269. doi: 10.3390/bioengineering11121269.
3
Production of Nanofibrillar Patterned Collagen for Tissue Engineering.
J Vis Exp. 2024 Sep 20(211). doi: 10.3791/67165.
5
Engineered nanofibrillar collagen with tunable biophysical properties for myogenic, endothelial, and osteogenic cell guidance.
Acta Biomater. 2024 Sep 15;186:95-107. doi: 10.1016/j.actbio.2024.08.002. Epub 2024 Aug 6.
6
Using Microfluidics to Align Matrix Architecture and Generate Chemokine Gradients Promotes Directional Branching in a Model of Epithelial Morphogenesis.
ACS Biomater Sci Eng. 2024 Aug 12;10(8):4865-4877. doi: 10.1021/acsbiomaterials.4c00245. Epub 2024 Jul 15.
7
Functional donor-site morbidity following reconstruction with pectoralis major flaps: A systematic review.
JPRAS Open. 2024 Jan 23;39:278-290. doi: 10.1016/j.jpra.2024.01.007. eCollection 2024 Mar.
8
Recent advances in fabrication of dECM-based composite materials for skin tissue engineering.
Front Bioeng Biotechnol. 2024 Jan 23;12:1348856. doi: 10.3389/fbioe.2024.1348856. eCollection 2024.
9
Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review.
Inflamm Regen. 2023 Nov 27;43(1):58. doi: 10.1186/s41232-023-00308-z.
10
Microfluidically Aligned Collagen to Maintain the Phenotype of Tenocytes In Vitro.
Adv Healthc Mater. 2024 Mar;13(6):e2303672. doi: 10.1002/adhm.202303672. Epub 2023 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验