Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA.
Anal Chem. 2010 Mar 15;82(6):2480-7. doi: 10.1021/ac9028642.
Epigenetic states are governed by DNA methylation and a host of modifications to histones bound with DNA. These states are essential for proper developmentally regulated gene expression and are perturbed in many diseases. There is great interest in identifying epigenetic mark placement genome wide and understanding how these marks vary among cell types, with changes in environment or according to health and disease status. Current epigenomic analyses employ bisulfite sequencing and chromatin immunoprecipitation, but query only one type of epigenetic mark at a time, DNA methylation, or histone modifications and often require substantial input material. To overcome these limitations, we established a method using nanofluidics and multicolor fluorescence microscopy to detect DNA and histones in individual chromatin fragments at about 10 Mbp/min. We demonstrated its utility for epigenetic analysis by identifying DNA methylation on individual molecules. This technique will provide the unprecedented opportunity for genome wide, simultaneous analysis of multiple epigenetic states on single molecules.
表观遗传状态受 DNA 甲基化和与 DNA 结合的组蛋白的一系列修饰控制。这些状态对于适当的发育调控基因表达是必不可少的,并且在许多疾病中受到干扰。人们非常感兴趣的是确定全基因组的表观遗传标记位置,并了解这些标记在细胞类型之间如何变化,以及环境变化或根据健康和疾病状况如何变化。目前的表观基因组分析采用亚硫酸氢盐测序和染色质免疫沉淀法,但每次只能检测一种类型的表观遗传标记,即 DNA 甲基化或组蛋白修饰,并且通常需要大量的输入材料。为了克服这些限制,我们建立了一种使用纳米流体和多色荧光显微镜在大约 10 Mbp/min 的速度下检测单个染色质片段中的 DNA 和组蛋白的方法。我们通过鉴定单个分子上的 DNA 甲基化证明了其在表观遗传学分析中的实用性。该技术将为全基因组范围内对单个分子上的多个表观遗传状态进行同时分析提供前所未有的机会。