Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
Nucleic Acids Res. 2021 Aug 20;49(14):e82. doi: 10.1093/nar/gkab423.
Proper regulation of genome architecture and activity is essential for the development and function of multicellular organisms. Histone modifications, acting in combination, specify these activity states at individual genomic loci. However, the methods used to study these modifications often require either a large number of cells or are limited to targeting one histone mark at a time. Here, we developed a new method called Single Cell Evaluation of Post-TRanslational Epigenetic Encoding (SCEPTRE) that uses Expansion Microscopy (ExM) to visualize and quantify multiple histone modifications at non-repetitive genomic regions in single cells at a spatial resolution of ∼75 nm. Using SCEPTRE, we distinguished multiple histone modifications at a single housekeeping gene, quantified histone modification levels at multiple developmentally-regulated genes in individual cells, and evaluated the relationship between histone modifications and RNA polymerase II loading at individual loci. We find extensive variability in epigenetic states between individual gene loci hidden from current population-averaged measurements. These findings establish SCEPTRE as a new technique for multiplexed detection of combinatorial chromatin states at single genomic loci in single cells.
基因组结构和活性的适当调控对于多细胞生物的发育和功能至关重要。组蛋白修饰以组合的方式在单个基因组位点上指定这些活性状态。然而,用于研究这些修饰的方法通常需要大量的细胞,或者一次只能针对一种组蛋白标记。在这里,我们开发了一种名为单细胞翻译后表观遗传编码评估(SCEPTRE)的新方法,该方法使用扩展显微镜(ExM)在单细胞中非重复基因组区域以约 75nm 的空间分辨率可视化和定量多个组蛋白修饰。使用 SCEPTRE,我们在单个管家基因上区分了多个组蛋白修饰,在单个细胞中定量了多个发育调节基因的组蛋白修饰水平,并评估了组蛋白修饰与单个基因座处 RNA 聚合酶 II 加载之间的关系。我们发现,在当前的群体平均测量中隐藏了单个基因座上的表观遗传状态的个体之间存在广泛的可变性。这些发现确立了 SCEPTRE 作为一种新技术,可以在单个细胞中单基因座上的组合染色质状态进行多重检测。