Iarossi Marzia, Verma Navneet Chandra, Bhattacharya Ivy, Meller Amit
Faculty of Biomedical Engineering, Technion -IIT, Haifa 3200003, Israel.
Anal Chem. 2025 Apr 29;97(16):8641-8653. doi: 10.1021/acs.analchem.4c06684. Epub 2025 Apr 17.
Driven by recent advancements in nanofabrication techniques, single-molecule sensing and manipulations in nanofluidic devices are rapidly evolving. These sophisticated biosensors have already had significant impacts on basic research as well as on applications in molecular diagnostics. The nanoscale dimensions of these devices introduce new physical phenomena by confining the biomolecules in at least one dimension, creating effects such as biopolymer linearization, stretching, and separation by mass that are utilized to enhance the biomolecule sensing resolutions. At the same time, the suppressed diffusional motion allows for better single-molecule SNR (signal-to-noise ratio) sensing over time. In particular, nanofluidic devices based on nanochannels have been established as promising technologies for the linearization of ultralong genomic DNA molecules and for optical genome mapping, opening a window to directly observe and infer genome organization. More recently, nanochannels have shown promising capabilities for single-molecule protein sizing, separation, and identification. Consequently, this technology is attracting remarkable interest for applications in single-molecule proteomics. In this review, we discuss the recent advancements of nanochannel-based technologies, focusing on their applications for single-molecule sensing and the characterization of a wide range of biomolecules.
在纳米制造技术最近取得的进展推动下,纳米流体装置中的单分子传感和操纵正在迅速发展。这些精密的生物传感器已经对基础研究以及分子诊断应用产生了重大影响。这些装置的纳米级尺寸通过在至少一个维度上限制生物分子引入了新的物理现象,产生了诸如生物聚合物线性化、拉伸和按质量分离等效应,这些效应被用于提高生物分子传感分辨率。同时,受抑制的扩散运动使得随着时间推移能够实现更好的单分子信噪比传感。特别是,基于纳米通道的纳米流体装置已被确立为用于超长基因组DNA分子线性化和光学基因组图谱绘制的有前景的技术,为直接观察和推断基因组组织打开了一扇窗口。最近,纳米通道在单分子蛋白质大小测定、分离和鉴定方面也显示出了有前景的能力。因此,这项技术在单分子蛋白质组学应用中引起了极大的关注。在这篇综述中,我们讨论基于纳米通道的技术的最新进展,重点关注它们在单分子传感以及各种生物分子表征方面的应用。