Suppr超能文献

对基因调控网络进行最小程度的扰动以避免疾病表型:以胶质瘤网络为例

Minimally perturbing a gene regulatory network to avoid a disease phenotype: the glioma network as a test case.

作者信息

Karlebach Guy, Shamir Ron

机构信息

Tel-Aviv University, Haim Levanon St,, 69978, Tel-Aviv, Israel.

出版信息

BMC Syst Biol. 2010 Feb 25;4:15. doi: 10.1186/1752-0509-4-15.

Abstract

BACKGROUND

Mathematical modeling of biological networks is an essential part of Systems Biology. Developing and using such models in order to understand gene regulatory networks is a major challenge.

RESULTS

We present an algorithm that determines the smallest perturbations required for manipulating the dynamics of a network formulated as a Petri net, in order to cause or avoid a specified phenotype. By modifying McMillan's unfolding algorithm, we handle partial knowledge and reduce computation cost. The methodology is demonstrated on a glioma network. Out of the single gene perturbations, activation of glutathione S-transferase P (GSTP1) gene was by far the most effective in blocking the cancer phenotype. Among pairs of perturbations, NFkB and TGF-beta had the largest joint effect, in accordance with their role in the EMT process.

CONCLUSION

Our method allows perturbation analysis of regulatory networks and can overcome incomplete information. It can help in identifying drug targets and in prioritizing perturbation experiments.

摘要

背景

生物网络的数学建模是系统生物学的重要组成部分。开发和使用此类模型以理解基因调控网络是一项重大挑战。

结果

我们提出了一种算法,该算法可确定为操纵以Petri网形式表示的网络动态以引发或避免特定表型所需的最小扰动。通过修改麦克米兰的展开算法,我们处理部分知识并降低计算成本。该方法在胶质瘤网络上得到了验证。在单基因扰动中,谷胱甘肽S-转移酶P(GSTP1)基因的激活在阻断癌症表型方面最为有效。在成对扰动中,NFkB和TGF-β具有最大的联合效应,这与它们在EMT过程中的作用一致。

结论

我们的方法允许对调控网络进行扰动分析,并可克服信息不完整的问题。它有助于识别药物靶点并对扰动实验进行优先级排序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/702b/2851584/21265f90ff79/1752-0509-4-15-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验