Suppr超能文献

发酵和酵母厌氧生长生产乙醇的热力学分析。

Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.

机构信息

Combustion Research Facility, Sandia National Laboratories, MS 9052, Livermore, CA 94551-0969, USA.

出版信息

J Biotechnol. 2010 May 17;147(2):80-7. doi: 10.1016/j.jbiotec.2010.02.009. Epub 2010 Feb 23.

Abstract

Thermodynamic concepts have been used in the past to predict microbial growth yield. This may be the key consideration in many industrial biotechnology applications. It is not the case, however, in the context of ethanol fuel production. In this paper, we examine the thermodynamics of fermentation and concomitant growth of baker's yeast in continuous culture experiments under anaerobic, glucose-limited conditions, with emphasis on the yield and efficiency of bio-ethanol production. We find that anaerobic metabolism of yeast is very efficient; the process retains more than 90% of the maximum work that could be extracted from the growth medium supplied to the chemostat reactor. Yeast cells and other metabolic by-products are also formed, which reduces the glucose-to-ethanol conversion efficiency to less than 75%. Varying the specific ATP consumption rate, which is the fundamental parameter in this paper for modeling the energy demands of cell growth, shows the usual trade-off between ethanol production and biomass yield. The minimum ATP consumption rate required for synthesizing cell materials leads to biomass yield and Gibbs energy dissipation limits that are much more severe than those imposed by mass balance and thermodynamic equilibrium constraints.

摘要

过去曾使用热力学概念来预测微生物的生长产率。在许多工业生物技术应用中,这可能是关键的考虑因素。然而,在乙醇燃料生产的背景下并非如此。在本文中,我们研究了在厌氧、葡萄糖限制条件下连续培养实验中发酵和伴随的面包酵母生长的热力学,重点是生物乙醇生产的产率和效率。我们发现酵母的厌氧代谢非常高效;该过程从提供给恒化器反应器的生长培养基中提取的最大功保留了 90%以上。酵母细胞和其他代谢副产物也形成了,这将葡萄糖到乙醇的转化率降低到了 75%以下。改变特定的 ATP 消耗率,这是本文中用于模拟细胞生长能量需求的基本参数,显示了乙醇生产和生物量产率之间通常的权衡。合成细胞物质所需的最小 ATP 消耗率导致生物量产率和吉布斯能量耗散限制比质量平衡和热力学平衡约束施加的限制更为严格。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验