Suppr超能文献

大麦根线粒体产生和清除一氧化氮。

Production and scavenging of nitric oxide by barley root mitochondria.

机构信息

Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute for Biosciences, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany.

出版信息

Plant Cell Physiol. 2010 Apr;51(4):576-84. doi: 10.1093/pcp/pcq022. Epub 2010 Feb 24.

Abstract

We examined whether root mitochondria and mitochondrial membranes produce nitric oxide (NO) exclusively by reduction of nitrite or also via a nitric oxide synthase (NOS), and to what extent direct NO measurements could become undetectable due to NO oxidation. Chemiluminescence detection of NO in the gas phase was used to monitor NO emission from suspensions (i.e. direct chemiluminescence). For comparison, diaminofluorescein (DAF) and diaminorhodamine (DAR) were used as NO indicators. NO oxidation to nitrite and nitrate was quantified after reduction of nitrite + nitrate to NO by vandium (III) with subsequent chemiluminescence detection (i.e. indirect chemiluminescence). Nitrite and NADH consumption were also measured. Anaerobic nitrite-dependent NO emission was exclusively associated with the membrane fraction, without participation of matrix components. Rates of nitrite and NADH consumption matched, whereas the rate of NO emission was lower. In air, mitochondria apparently produced no nitrite-dependent NO, and no NOS activity was detected by direct or indirect chemiluminescence. In contrast, with DAF-2 or DAR-4M, an l-arginine-dependent fluorescence increase took place. However, the response of this apparent low NOS activity to inhibitors, substrates and cofactors was untypical when compared with commercial inducible NOS (iNOS), and the existence of NOS in root mitochondria is therefore doubtful. In a solution of commercial iNOS, about two-thirds of the NO (measured as NADPH consumption) were oxidized to nitrite + nitrate. Addition of mitochondria to iNOS decreased the apparent NO emission, but without a concomitant increase in nitrite + nitrate formation. Thus, mitochondria appeared to accelerate oxidation of NO to volatile intermediates.

摘要

我们研究了根线粒体和线粒体膜是否仅通过还原亚硝酸盐产生一氧化氮 (NO),还是也通过一氧化氮合酶 (NOS),以及直接的 NO 测量由于 NO 氧化而变得无法检测到的程度。气相中的化学发光检测用于监测悬浮液中的 NO 排放(即直接化学发光)。为了比较,还使用二氨基荧光素 (DAF) 和二氨基罗丹明 (DAR) 作为 NO 指示剂。通过用三价钒 (III) 将亚硝酸盐+硝酸盐还原为 NO 后,用化学发光检测来量化 NO 氧化为亚硝酸盐和硝酸盐(即间接化学发光)。还测量了亚硝酸盐和 NADH 的消耗。缺氧依赖亚硝酸盐的 NO 排放仅与膜部分有关,而与基质成分无关。亚硝酸盐和 NADH 的消耗率相匹配,而 NO 排放率较低。在空气中,线粒体显然没有产生依赖亚硝酸盐的 NO,也没有通过直接或间接化学发光检测到 NOS 活性。相比之下,用 DAF-2 或 DAR-4M 时,会发生 l-精氨酸依赖性荧光增加。然而,与商业诱导型 NOS (iNOS) 相比,这种明显低 NOS 活性对抑制剂、底物和辅因子的反应是非典型的,因此根线粒体中 NOS 的存在是值得怀疑的。在商业 iNOS 的溶液中,约三分之二的 NO(以 NADPH 消耗测量)被氧化为亚硝酸盐+硝酸盐。向 iNOS 添加线粒体会降低明显的 NO 排放,但同时亚硝酸盐+硝酸盐的形成并没有增加。因此,线粒体似乎加速了 NO 向挥发性中间产物的氧化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验