Suppr超能文献

金黄色葡萄球菌 TarM 介导的细胞壁磷壁酸糖基化。

Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM.

机构信息

Division of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, D-72076 Tübingen, Germany.

出版信息

J Biol Chem. 2010 Apr 30;285(18):13405-15. doi: 10.1074/jbc.M109.096172. Epub 2010 Feb 25.

Abstract

Wall teichoic acid (WTA) glycopolymers are major constituents of cell envelopes in Staphylococcus aureus and related gram-positive bacteria with important roles in cell wall maintenance, susceptibility to antimicrobial molecules, biofilm formation, and host interaction. Most S. aureus strains express polyribitol phosphate WTA substituted with D-alanine and N-acetylglucosamine (GlcNAc). WTA sugar modifications are highly variable and have been implicated in bacteriophage susceptibility and immunogenicity, but the pathway and enzymes of staphylococcal WTA glycosylation have remained unknown. Revisiting the structure of S. aureus RN4220 WTA by NMR analysis revealed the presence of canonical polyribitol phosphate WTA bearing only alpha-linked GlcNAc substituents. A RN4220 transposon mutant resistant to WTA-dependent phages was identified and shown to produce altered WTA, which exhibited faster electrophoretic migration and lacked completely the WTA alpha-GlcNAc residues. Disruption of a gene of unknown function, renamed tarM, was responsible for this phenotype. Recombinant TarM was capable of glycosylating WTA in vitro in a UDP-GlcNAc-dependent manner, thereby confirming its WTA GlcNAc-transferase activity. Deletion of the last seven amino acids from the C terminus abolished the activity of TarM. tarM-related genes were found in the genomes of several WTA-producing bacteria, suggesting that TarM-mediated WTA glycosylation is a general pathway in gram-positive bacteria. Our study represents a basis for dissecting the biosynthesis and function of glycosylated WTA in S. aureus and other bacteria.

摘要

细胞壁磷壁酸(WTA)糖聚合物是金黄色葡萄球菌和相关革兰氏阳性菌细胞包膜的主要成分,在细胞壁维持、对抗生素分子的敏感性、生物膜形成和宿主相互作用中具有重要作用。大多数金黄色葡萄球菌菌株表达的多核糖醇磷酸 WTA 被 D-丙氨酸和 N-乙酰葡萄糖胺(GlcNAc)取代。WTA 糖修饰具有高度可变性,并与噬菌体敏感性和免疫原性有关,但葡萄球菌 WTA 糖基化的途径和酶仍然未知。通过 NMR 分析重新研究了金黄色葡萄球菌 RN4220 WTA 的结构,发现存在仅带有α-连接的 GlcNAc 取代基的典型多核糖醇磷酸 WTA。鉴定出对 WTA 依赖性噬菌体具有抗性的 RN4220 转座子突变体,并表明其产生了改变的 WTA,其表现出更快的电泳迁移率,并且完全缺乏 WTA α-GlcNAc 残基。一个功能未知的基因(命名为 tarM)的缺失是这种表型的原因。重组 TarM 能够以 UDP-GlcNAc 依赖性方式在体外糖基化 WTA,从而证实其 WTA GlcNAc 转移酶活性。从 C 末端缺失最后七个氨基酸完全消除了 TarM 的活性。在几个产生 WTA 的细菌的基因组中发现了与 tarM 相关的基因,这表明 TarM 介导的 WTA 糖基化是革兰氏阳性菌的一种普遍途径。我们的研究为剖析金黄色葡萄球菌和其他细菌中糖基化 WTA 的生物合成和功能奠定了基础。

相似文献

1
Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM.
J Biol Chem. 2010 Apr 30;285(18):13405-15. doi: 10.1074/jbc.M109.096172. Epub 2010 Feb 25.
2
The two-component system ArlRS is essential for wall teichoic acid glycoswitching in .
mBio. 2025 Jan 8;16(1):e0266824. doi: 10.1128/mbio.02668-24. Epub 2024 Nov 29.
4
Wall teichoic acid glycosylation of bovine-associated Staphylococcus aureus strains.
Vet Microbiol. 2025 Mar;302:110403. doi: 10.1016/j.vetmic.2025.110403. Epub 2025 Jan 20.
5
Genomic Analysis of the Unusual Staphylococcus aureus ST630 Isolates Harboring WTA Glycosyltransferase Genes and .
Microbiol Spectr. 2022 Feb 23;10(1):e0150121. doi: 10.1128/spectrum.01501-21. Epub 2022 Feb 16.
6
Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus.
Int J Med Microbiol. 2014 May;304(3-4):215-21. doi: 10.1016/j.ijmm.2013.10.009. Epub 2013 Nov 1.
10
Structure and mechanism of Staphylococcus aureus TarM, the wall teichoic acid α-glycosyltransferase.
Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):E576-85. doi: 10.1073/pnas.1418084112. Epub 2015 Jan 26.

引用本文的文献

1
Natural products influence bacteriophage infectivity.
Nat Prod Rep. 2025 Aug 18. doi: 10.1039/d5np00014a.
4
Glycosylation of oral bacteria in modulating adhesion and biofilm formation.
J Oral Microbiol. 2025 Apr 8;17(1):2486650. doi: 10.1080/20002297.2025.2486650. eCollection 2025.
5
Acyltransferases that Modify Cell Surface Polymers Across the Membrane.
Biochemistry. 2025 Apr 15;64(8):1728-1749. doi: 10.1021/acs.biochem.4c00731. Epub 2025 Apr 2.
7
The two-component system ArlRS is essential for wall teichoic acid glycoswitching in .
mBio. 2025 Jan 8;16(1):e0266824. doi: 10.1128/mbio.02668-24. Epub 2024 Nov 29.
8
Glycan-specific IgM is critical for human immunity to Staphylococcus aureus.
Cell Rep Med. 2024 Sep 17;5(9):101734. doi: 10.1016/j.xcrm.2024.101734.
9
Stress Response to Bicarbonate Depletion.
Int J Mol Sci. 2024 Aug 26;25(17):9251. doi: 10.3390/ijms25179251.
10
Wall teichoic acid substitution with glucose governs phage susceptibility of .
mBio. 2024 Apr 10;15(4):e0199023. doi: 10.1128/mbio.01990-23. Epub 2024 Mar 12.

本文引用的文献

1
Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl.
Mol Microbiol. 2010 Feb;75(4):864-73. doi: 10.1111/j.1365-2958.2009.07007.x. Epub 2010 Jan 25.
2
Wall teichoic acid function, biosynthesis, and inhibition.
Chembiochem. 2010 Jan 4;11(1):35-45. doi: 10.1002/cbic.200900557.
3
The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus.
Int J Med Microbiol. 2010 Feb;300(2-3):148-54. doi: 10.1016/j.ijmm.2009.10.001. Epub 2009 Nov 6.
4
Staphylococcus aureus mutant screen reveals interaction of the human antimicrobial peptide dermcidin with membrane phospholipids.
Antimicrob Agents Chemother. 2009 Oct;53(10):4200-10. doi: 10.1128/AAC.00428-09. Epub 2009 Jul 13.
5
Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin.
J Bacteriol. 2009 Jul;191(13):4482-4. doi: 10.1128/JB.00221-09. Epub 2009 May 8.
6
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
9
Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions.
Nat Rev Microbiol. 2008 Apr;6(4):276-87. doi: 10.1038/nrmicro1861. Epub 2008 Mar 10.
10
Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface.
Microbiology (Reading). 2008 Mar;154(Pt 3):865-877. doi: 10.1099/mic.0.2007/013292-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验