Division of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Strasse 6, D-72076 Tübingen, Germany.
J Biol Chem. 2010 Apr 30;285(18):13405-15. doi: 10.1074/jbc.M109.096172. Epub 2010 Feb 25.
Wall teichoic acid (WTA) glycopolymers are major constituents of cell envelopes in Staphylococcus aureus and related gram-positive bacteria with important roles in cell wall maintenance, susceptibility to antimicrobial molecules, biofilm formation, and host interaction. Most S. aureus strains express polyribitol phosphate WTA substituted with D-alanine and N-acetylglucosamine (GlcNAc). WTA sugar modifications are highly variable and have been implicated in bacteriophage susceptibility and immunogenicity, but the pathway and enzymes of staphylococcal WTA glycosylation have remained unknown. Revisiting the structure of S. aureus RN4220 WTA by NMR analysis revealed the presence of canonical polyribitol phosphate WTA bearing only alpha-linked GlcNAc substituents. A RN4220 transposon mutant resistant to WTA-dependent phages was identified and shown to produce altered WTA, which exhibited faster electrophoretic migration and lacked completely the WTA alpha-GlcNAc residues. Disruption of a gene of unknown function, renamed tarM, was responsible for this phenotype. Recombinant TarM was capable of glycosylating WTA in vitro in a UDP-GlcNAc-dependent manner, thereby confirming its WTA GlcNAc-transferase activity. Deletion of the last seven amino acids from the C terminus abolished the activity of TarM. tarM-related genes were found in the genomes of several WTA-producing bacteria, suggesting that TarM-mediated WTA glycosylation is a general pathway in gram-positive bacteria. Our study represents a basis for dissecting the biosynthesis and function of glycosylated WTA in S. aureus and other bacteria.
细胞壁磷壁酸(WTA)糖聚合物是金黄色葡萄球菌和相关革兰氏阳性菌细胞包膜的主要成分,在细胞壁维持、对抗生素分子的敏感性、生物膜形成和宿主相互作用中具有重要作用。大多数金黄色葡萄球菌菌株表达的多核糖醇磷酸 WTA 被 D-丙氨酸和 N-乙酰葡萄糖胺(GlcNAc)取代。WTA 糖修饰具有高度可变性,并与噬菌体敏感性和免疫原性有关,但葡萄球菌 WTA 糖基化的途径和酶仍然未知。通过 NMR 分析重新研究了金黄色葡萄球菌 RN4220 WTA 的结构,发现存在仅带有α-连接的 GlcNAc 取代基的典型多核糖醇磷酸 WTA。鉴定出对 WTA 依赖性噬菌体具有抗性的 RN4220 转座子突变体,并表明其产生了改变的 WTA,其表现出更快的电泳迁移率,并且完全缺乏 WTA α-GlcNAc 残基。一个功能未知的基因(命名为 tarM)的缺失是这种表型的原因。重组 TarM 能够以 UDP-GlcNAc 依赖性方式在体外糖基化 WTA,从而证实其 WTA GlcNAc 转移酶活性。从 C 末端缺失最后七个氨基酸完全消除了 TarM 的活性。在几个产生 WTA 的细菌的基因组中发现了与 tarM 相关的基因,这表明 TarM 介导的 WTA 糖基化是革兰氏阳性菌的一种普遍途径。我们的研究为剖析金黄色葡萄球菌和其他细菌中糖基化 WTA 的生物合成和功能奠定了基础。