Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
Neurobiol Dis. 2010 Jul;39(1):53-60. doi: 10.1016/j.nbd.2010.02.005. Epub 2010 Feb 24.
The rapidly emerging science of epigenetics and epigenomic medicine promises to reveal novel insights into the susceptibility to and the onset and progression of epileptic disorders. Epigenetic regulatory mechanisms are now implicated in orchestrating aspects of neural development (e.g., cell fate specification and maturation), homeostasis and stress responses (e.g., immediate early gene transcription), and neural network function (e.g., excitation-inhibition coupling and activity-dependent plasticity). These same neurobiological processes are responsible for determining the heterogeneous features of complex epileptic disease states. Thus, we highlight recent evidence that is beginning to elucidate the specific roles played by epigenetic mechanisms, including DNA methylation, histone code modifications and chromatin remodeling, noncoding RNAs and RNA editing, in human epilepsy syndromes and in the process of epileptogenesis. The highly integrated layers of the epigenome are responsible for the cell type specific and exquisitely environmentally responsive deployment of genes and functional gene networks that underlie the molecular pathophysiology of epilepsy and its associated comorbidities, including but not limited to neurotransmitter receptors (e.g., GluR2, GLRA2, and GLRA3), growth factors (e.g., BDNF), extracellular matrix proteins (e.g., RELN), and diverse transcriptional regulators (e.g., CREB, c-fos, and c-jun). These important observations suggest that future epigenetic studies are necessary to better understand, classify, prevent, and treat epileptic disorders.
表观遗传学和表观基因组医学这一新兴科学有望为癫痫疾病的易感性、发病和进展提供新的见解。表观遗传调控机制目前被认为在协调神经发育(例如细胞命运特化和成熟)、内稳态和应激反应(例如即时早期基因转录)以及神经网络功能(例如兴奋-抑制偶联和活性依赖性可塑性)等方面发挥作用。这些相同的神经生物学过程负责决定复杂癫痫疾病状态的异质特征。因此,我们强调了最近的证据,这些证据开始阐明表观遗传机制(包括 DNA 甲基化、组蛋白密码修饰和染色质重塑、非编码 RNA 和 RNA 编辑)在人类癫痫综合征和癫痫发生过程中的具体作用。表观基因组的高度整合层负责特定于细胞类型的、极其环境响应的基因和功能基因网络的部署,这些基因和功能基因网络是癫痫及其相关共病的分子病理生理学的基础,包括但不限于神经递质受体(例如 GluR2、GLRA2 和 GLRA3)、生长因子(例如 BDNF)、细胞外基质蛋白(例如 RELN)和多种转录调节剂(例如 CREB、c-fos 和 c-jun)。这些重要的观察结果表明,未来的表观遗传学研究对于更好地理解、分类、预防和治疗癫痫疾病是必要的。