Mehler Mark F
Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Rose F. Kennedy Center 401, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
Prog Neurobiol. 2008 Dec 11;86(4):305-41. doi: 10.1016/j.pneurobio.2008.10.001. Epub 2008 Oct 17.
Epigenetics and epigenomic medicine encompass a new science of brain and behavior that are already providing unique insights into the mechanisms underlying brain development, evolution, neuronal and network plasticity and homeostasis, senescence, the etiology of diverse neurological diseases and neural regenerative processes. Epigenetic mechanisms include DNA methylation, histone modifications, nucleosome repositioning, higher order chromatin remodeling, non-coding RNAs, and RNA and DNA editing. RNA is centrally involved in directing these processes, implying that the transcriptional state of the cell is the primary determinant of epigenetic memory. This transcriptional state can be modified not only by internal and external cues affecting gene expression and post-transcriptional processing, but also by RNA and DNA editing through activity-dependent intracellular transport and modulation of RNAs and RNA regulatory supercomplexes, and through trans-neuronal and systemic trafficking of functional RNA subclasses. These integrated processes promote dynamic reorganization of nuclear architecture and the genomic landscape to modulate functional gene and neural networks with complex temporal and spatial trajectories. Epigenetics represents the long sought after molecular interface mediating gene-environmental interactions during critical periods throughout the lifecycle. The discipline of environmental epigenomics has begun to identify combinatorial profiles of environmental stressors modulating the latency, initiation and progression of specific neurological disorders, and more selective disease biomarkers and graded molecular responses to emerging therapeutic interventions. Pharmacoepigenomic therapies will promote accelerated recovery of impaired and seemingly irrevocably lost cognitive, behavioral, sensorimotor functions through epigenetic reprogramming of endogenous regional neural stem cell fate decisions, targeted tissue remodeling and restoration of neural network integrity, plasticity and connectivity.
表观遗传学和表观基因组医学涵盖了一门关于大脑与行为的新科学,这门科学已为大脑发育、进化、神经元和神经网络可塑性与稳态、衰老、各种神经疾病的病因以及神经再生过程背后的机制提供了独特见解。表观遗传机制包括DNA甲基化、组蛋白修饰、核小体重新定位、高阶染色质重塑、非编码RNA以及RNA和DNA编辑。RNA在指导这些过程中起着核心作用,这意味着细胞的转录状态是表观遗传记忆的主要决定因素。这种转录状态不仅可以通过影响基因表达和转录后加工的内部和外部线索进行修饰,还可以通过依赖活性的细胞内运输以及RNA和RNA调节超复合物的调制,以及通过功能性RNA亚类的跨神经元和全身运输进行RNA和DNA编辑来修饰。这些整合过程促进了核结构和基因组景观的动态重组,以通过复杂的时空轨迹调节功能性基因和神经网络。表观遗传学代表了在整个生命周期的关键时期介导基因与环境相互作用的长期寻求的分子界面。环境表观基因组学学科已开始确定调节特定神经疾病潜伏期、起始和进展的环境应激源的组合谱,以及更具选择性的疾病生物标志物和对新兴治疗干预的分级分子反应。药物表观基因组疗法将通过对内源性区域神经干细胞命运决定进行表观遗传重编程、靶向组织重塑以及恢复神经网络完整性、可塑性和连通性,促进受损以及看似不可逆转丧失的认知、行为、感觉运动功能的加速恢复。