Suppr超能文献

多位点序列分型分析揭示了来自美国监测研究的光滑念珠菌血流分离株群体中的克隆性和重组现象。

Multilocus sequence type analysis reveals both clonality and recombination in populations of Candida glabrata bloodstream isolates from U.S. surveillance studies.

作者信息

Lott Timothy J, Frade João P, Lockhart Shawn R

机构信息

Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.

出版信息

Eukaryot Cell. 2010 Apr;9(4):619-25. doi: 10.1128/EC.00002-10. Epub 2010 Feb 26.

Abstract

The human commensal yeast Candida glabrata is becoming increasingly important as an agent of nosocomial bloodstream infection. However, relatively little is known concerning the genetics and population structure of this species. We have analyzed 230 incident bloodstream isolates from previous and current population-based surveillance studies by using multilocus sequence typing (MLST). Our results show that in the U.S. cities of Atlanta, GA; Baltimore, MD; and San Francisco, CA during three time periods spanning 1992 to 2009, five populations of C. glabrata bloodstream isolates are defined by a relatively small number of sequence types. There is little genetic differentiation in the different C. glabrata populations. We also show that there has been a significant temporal shift in the prevalence of one major subtype in Atlanta. Our results support the concept that both recombination and clonality play a role in the population structure of this species.

摘要

人体共生酵母光滑念珠菌作为医院血流感染的病原体正变得越来越重要。然而,关于该物种的遗传学和种群结构,人们所知相对较少。我们通过多位点序列分型(MLST)分析了来自以往和当前基于人群的监测研究中的230株血流感染分离株。我们的结果表明,在1992年至2009年的三个时间段内,在美国佐治亚州亚特兰大市、马里兰州巴尔的摩市和加利福尼亚州旧金山市,光滑念珠菌血流感染分离株的五个种群由相对较少的序列类型定义。不同的光滑念珠菌种群之间几乎没有遗传分化。我们还表明,亚特兰大一种主要亚型的流行率存在显著的时间变化。我们的结果支持这样一种观点,即重组和克隆性在该物种的种群结构中都发挥着作用。

相似文献

3
High diversity of Candida glabrata in a tertiary hospital-Mwanza, Tanzania.
Med Mycol. 2019 Oct 1;57(7):914-917. doi: 10.1093/mmy/myy151.
4
Multilocus sequence typing of Candida glabrata reveals geographically enriched clades.
J Clin Microbiol. 2003 Dec;41(12):5709-17. doi: 10.1128/JCM.41.12.5709-5717.2003.
5
Evidence for recombination in Candida glabrata.
Fungal Genet Biol. 2005 Mar;42(3):233-43. doi: 10.1016/j.fgb.2004.11.010. Epub 2005 Jan 22.
6
Assessment of Candida glabrata strain relatedness by pulsed-field gel electrophoresis and multilocus sequence typing.
J Clin Microbiol. 2007 Aug;45(8):2452-9. doi: 10.1128/JCM.00699-07. Epub 2007 Jun 6.
7
Microsatellite analysis of Candida isolates from recurrent vulvovaginal candidiasis.
J Med Microbiol. 2012 Aug;61(Pt 8):1091-1096. doi: 10.1099/jmm.0.043992-0. Epub 2012 Apr 26.
8
Bloodstream and non-invasive isolates of Candida glabrata have similar population structures and fluconazole susceptibilities.
Med Mycol. 2012 Feb;50(2):136-42. doi: 10.3109/13693786.2011.592153. Epub 2011 Aug 15.
9
Changes in karyotype and azole susceptibility of sequential bloodstream isolates from patients with Candida glabrata candidemia.
J Clin Microbiol. 2007 Aug;45(8):2385-91. doi: 10.1128/JCM.00381-07. Epub 2007 Jun 20.
10
A review of molecular techniques to type Candida glabrata isolates.
Mycoses. 2010 Nov;53(6):463-7. doi: 10.1111/j.1439-0507.2009.01753.x.

引用本文的文献

2
Molecular fingerprinting by multi-locus sequence typing identifies microevolution and nosocomial transmission of in Kuwait.
Front Public Health. 2023 Sep 8;11:1242622. doi: 10.3389/fpubh.2023.1242622. eCollection 2023.
3
Multilocus Sequence Typing Reveals Extensive Genetic Diversity of the Emerging Fungal Pathogen .
Front Cell Infect Microbiol. 2021 Dec 27;11:761596. doi: 10.3389/fcimb.2021.761596. eCollection 2021.
5
Clonal evolution of and at oral niche level in health and disease.
J Oral Microbiol. 2021 Mar 15;13(1):1894047. doi: 10.1080/20002297.2021.1894047.
6
DNA damage response of major fungal pathogen Candida glabrata offers clues to explain its genetic diversity.
Curr Genet. 2021 Jun;67(3):439-445. doi: 10.1007/s00294-021-01162-7. Epub 2021 Feb 23.
7
Diversity of the diploid sequence type of clinical isolates from a tertiary-care hospital in Mwanza, Tanzania.
New Microbes New Infect. 2020 Jul 28;37:100731. doi: 10.1016/j.nmni.2020.100731. eCollection 2020 Sep.
8
Genetic Basis of Azole and Echinocandin Resistance in Clinical Candida glabrata in Japan.
Antimicrob Agents Chemother. 2020 Aug 20;64(9). doi: 10.1128/AAC.00783-20.

本文引用的文献

1
Uneven distribution of mating types among genotypes of Candida glabrata isolates from clinical samples.
Eukaryot Cell. 2009 Mar;8(3):287-95. doi: 10.1128/EC.00215-08. Epub 2009 Jan 16.
2
Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes.
Nucleic Acids Res. 2009 Jan;37(Database issue):D550-4. doi: 10.1093/nar/gkn859. Epub 2008 Nov 16.
3
Multilocus sequence typing of pathogenic Candida species.
Eukaryot Cell. 2008 Jul;7(7):1075-84. doi: 10.1128/EC.00062-08. Epub 2008 May 2.
4
One year prospective survey of Candida bloodstream infections in Scotland.
J Med Microbiol. 2007 Aug;56(Pt 8):1066-1075. doi: 10.1099/jmm.0.47239-0.
5
Assessment of Candida glabrata strain relatedness by pulsed-field gel electrophoresis and multilocus sequence typing.
J Clin Microbiol. 2007 Aug;45(8):2452-9. doi: 10.1128/JCM.00699-07. Epub 2007 Jun 6.
6
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Mol Biol Evol. 2007 Aug;24(8):1596-9. doi: 10.1093/molbev/msm092. Epub 2007 May 7.
8
Epidemiology of invasive candidiasis: a persistent public health problem.
Clin Microbiol Rev. 2007 Jan;20(1):133-63. doi: 10.1128/CMR.00029-06.
9
Evidence for recombination in Candida glabrata.
Fungal Genet Biol. 2005 Mar;42(3):233-43. doi: 10.1016/j.fgb.2004.11.010. Epub 2005 Jan 22.
10
HyPhy: hypothesis testing using phylogenies.
Bioinformatics. 2005 Mar 1;21(5):676-9. doi: 10.1093/bioinformatics/bti079. Epub 2004 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验