Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Nat Biotechnol. 2010 Mar;28(3):264-70. doi: 10.1038/nbt.1609. Epub 2010 Feb 28.
The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h's paramagnetic heme iron led to a drop in MRI signal enhancement and a shift in optical absorbance. Using an absorbance-based screen, we evolved the specificity of BM3h away from its natural ligand and toward dopamine, producing sensors with dissociation constants for dopamine of 3.3-8.9 microM. These molecules were used to image depolarization-triggered neurotransmitter release from PC12 cells and in the brains of live animals. Our results demonstrate the feasibility of molecular-level functional MRI using neural activity-dependent sensors, and our protein engineering approach can be generalized to create probes for other targets.
开发能够以高时间和空间分辨率进行体内神经信号成像的分子探针仍然具有挑战性。在这里,我们应用定向进化技术来创建对神经递质多巴胺敏感的磁共振成像(MRI)造影剂。这些传感器源自细菌细胞色素 P450-BM3(BM3h)的血红素结构域。配体与 BM3h 的顺磁血红素铁附近的一个位点结合,导致 MRI 信号增强降低和光吸收位移。使用基于吸光度的筛选,我们使 BM3h 的特异性从其天然配体转变为多巴胺,从而产生多巴胺解离常数为 3.3-8.9 microM 的传感器。这些分子用于对 PC12 细胞中去极化触发的神经递质释放进行成像,并在活体动物的大脑中进行成像。我们的结果证明了使用神经活动依赖性传感器进行分子水平功能 MRI 的可行性,并且我们的蛋白质工程方法可以推广到创建其他靶标探针。