Nanoscience Centre, J J Thomson Avenue, University of Cambridge, Cambridge CB3 0FF, UK.
Nat Nanotechnol. 2010 Mar;5(3):204-7. doi: 10.1038/nnano.2010.26. Epub 2010 Feb 28.
In nature, sophisticated functional materials are created through hierarchical self-assembly of simple nanoscale motifs. In the laboratory, much progress has been made in the controlled assembly of molecules into one-, two- and three-dimensional artificial nanostructures, but bridging from the nanoscale to the macroscale to create useful macroscopic materials remains a challenge. Here we show a scalable self-assembly approach to making free-standing films from amyloid protein fibrils. The films were well ordered and highly rigid, with a Young's modulus of up to 5-7 GPa, which is comparable to the highest values for proteinaceous materials found in nature. We show that the self-organizing protein scaffolds can align otherwise unstructured components (such as fluorophores) within the macroscopic films. Multiscale self-assembly that relies on highly specific biomolecular interactions is an attractive path for realizing new multifunctional materials built from the bottom up.
在自然界中,通过简单纳米尺度图案的分级自组装,形成了复杂的功能材料。在实验室中,人们在控制分子组装成一维、二维和三维人工纳米结构方面取得了很大进展,但要将其从纳米尺度扩展到宏观尺度,以制造有用的宏观材料仍然是一个挑战。在这里,我们展示了一种从淀粉样蛋白纤维中制备独立膜的可扩展自组装方法。所制备的薄膜具有良好的有序性和高刚性,杨氏模量高达 5-7GPa,与自然界中发现的最高值相当。我们还表明,自组织的蛋白质支架可以在宏观薄膜内排列其他无定形的成分(如荧光团)。依赖于高度特异性生物分子相互作用的多尺度自组装,为实现由下至上构建的新型多功能材料提供了一条有吸引力的途径。