文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脆性 X 智力低下蛋白 1 和细丝蛋白 A 在果蝇长时记忆中存在遗传相互作用。

Fragile x mental retardation 1 and filamin a interact genetically in Drosophila long-term memory.

机构信息

Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor New York, NY, USA.

出版信息

Front Neural Circuits. 2010 Jan 8;3:22. doi: 10.3389/neuro.04.022.2009. eCollection 2010.


DOI:10.3389/neuro.04.022.2009
PMID:20190856
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2813723/
Abstract

The last decade has witnessed the identification of single-gene defects associated with an impressive number of mental retardation syndromes. Fragile X syndrome, the most common cause of mental retardation for instance, results from disruption of the FMR1 gene. Similarly, Periventricular Nodular Heterotopia, which includes cerebral malformation, epilepsy and cognitive disabilities, derives from disruption of the Filamin A gene. While it remains unclear whether defects in common molecular pathways may underlie the cognitive dysfunction of these various syndromes, defects in cytoskeletal structure nonetheless appear to be common to several mental retardation syndromes. FMR1 is known to interact with Rac, profilin, PAK and Ras, which are associated with dendritic spine defects. In Drosophila, disruptions of the dFmr1 gene impair long-term memory (LTM), and the Filamin A homolog (cheerio) was identified in a behavioral screen for LTM mutants. Thus, we investigated the possible interaction between cheerio and dFmr1 during LTM formation in Drosophila. We show that LTM specifically is defective in dFmr1/cheerio double heterozygotes, while it is normal in single heterozygotes for either dFmr1 or cheerio. In dFmr1 mutants, Filamin (Cheerio) levels are lower than normal after spaced training. These observations support the notion that decreased actin cross-linking may underlie the persistence of long and thin dendritic spines in Fragile X patients and animal models. More generally, our results represent the first demonstration of a genetic interaction between mental retardation genes in an in vivo model system of memory formation.

摘要

过去十年见证了许多与智力迟钝综合征相关的单基因缺陷的鉴定。例如,脆性 X 综合征是智力迟钝的最常见原因,它是由 FMR1 基因的破坏引起的。同样,脑室周围结节性异位症,包括脑畸形、癫痫和认知障碍,源自 Filamin A 基因的破坏。虽然尚不清楚常见分子途径的缺陷是否是这些各种综合征认知功能障碍的基础,但细胞骨架结构的缺陷似乎是几种智力迟钝综合征的共同特征。已知 FMR1 与 Rac、原肌球蛋白、PAK 和 Ras 相互作用,这些与树突棘缺陷有关。在果蝇中,dFmr1 基因的破坏会损害长期记忆 (LTM),并且在 LTM 突变体的行为筛选中鉴定出 Filamin A 同源物 (cheerio)。因此,我们研究了果蝇中 LTM 形成过程中 cheerio 和 dFmr1 之间可能的相互作用。我们表明,LTM 在 dFmr1/cheerio 双杂合子中特异性缺陷,而在 dFmr1 或 cheerio 中的单杂合子中则正常。在 dFmr1 突变体中,间隔训练后 Filamin(Cheerio)水平低于正常。这些观察结果支持这样一种观点,即肌动蛋白交联的减少可能是脆性 X 患者和动物模型中长而细的树突棘持续存在的基础。更一般地说,我们的结果代表了在记忆形成的体内模型系统中智力迟钝基因之间遗传相互作用的首次证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5abb/2813723/a903bdcc0de4/fncir-03-022-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5abb/2813723/b8ca4749b6a0/fncir-03-022-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5abb/2813723/320cb68694f6/fncir-03-022-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5abb/2813723/7fc14d03133a/fncir-03-022-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5abb/2813723/a903bdcc0de4/fncir-03-022-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5abb/2813723/b8ca4749b6a0/fncir-03-022-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5abb/2813723/320cb68694f6/fncir-03-022-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5abb/2813723/7fc14d03133a/fncir-03-022-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5abb/2813723/a903bdcc0de4/fncir-03-022-g004.jpg

相似文献

[1]
Fragile x mental retardation 1 and filamin a interact genetically in Drosophila long-term memory.

Front Neural Circuits. 2010-1-8

[2]
Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase.

Dis Model Mech. 2011-6-13

[3]
Fragile X mental retardation protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P or FXR2P.

Dis Model Mech. 2010-5-4

[4]
RNA interference: a new mechanism by which FMRP acts in the normal brain? What can Drosophila teach us?

Ment Retard Dev Disabil Res Rev. 2004

[5]
Argonaute2 suppresses Drosophila fragile X expression preventing neurogenesis and oogenesis defects.

PLoS One. 2009-10-27

[6]
Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants.

J Neurosci. 2004-6-23

[7]
The Drosophila fragile X mental retardation gene regulates sleep need.

J Neurosci. 2009-2-18

[8]
Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein.

Mol Cell Biol. 2000-11

[9]
An assay for social interaction in Drosophila fragile X mutants.

Fly (Austin). 2010

[10]
Stress Odorant Sensory Response Dysfunction in Fragile X Syndrome Mutants.

Front Mol Neurosci. 2018-8-8

引用本文的文献

[1]
Do metabolic deficits contribute to sleep disruption in monogenic intellectual disability syndromes?

Trends Neurosci. 2024-8

[2]
Insights into the role of intracellular calcium signaling in the neurobiology of neurodevelopmental disorders.

Front Neurosci. 2023-2-15

[3]
Stress-Sensitive Protein Rac1 and Its Involvement in Neurodevelopmental Disorders.

Neural Plast. 2020

[4]
Fragile X mental retardation protein modulates somatic D-type K channels and action potential threshold in the mouse prefrontal cortex.

J Neurophysiol. 2020-12-1

[5]
A molecular war: convergent and ontogenetic evidence for adaptive host manipulation in related parasites infecting divergent hosts.

Proc Biol Sci. 2019-11-20

[6]
as a Model to Study the Multiple Phenotypes, Related to Genome Stability of the Fragile-X Syndrome.

Front Genet. 2019-2-13

[7]
Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion.

PLoS Genet. 2017-7-21

[8]
The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A.

Cell Rep. 2016-3-22

[9]
From Learning to Memory: What Flies Can Tell Us about Intellectual Disability Treatment.

Front Psychiatry. 2015-6-3

[10]
Deciphering discord: How Drosophila research has enhanced our understanding of the importance of FMRP in different spatial and temporal contexts.

Exp Neurol. 2015-5-28

本文引用的文献

[1]
Alpha-actinin and filamin cooperatively enhance the stiffness of actin filament networks.

PLoS One. 2009

[2]
Fruit flies and intellectual disability.

Fly (Austin). 2009

[3]
The autistic neuron: troubled translation?

Cell. 2008-10-31

[4]
Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory.

Nat Neurosci. 2008-10

[5]
Ras signaling mechanisms underlying impaired GluR1-dependent plasticity associated with fragile X syndrome.

J Neurosci. 2008-7-30

[6]
N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex.

Genes Dev. 2007-9-15

[7]
The AKAP Yu is required for olfactory long-term memory formation in Drosophila.

Proc Natl Acad Sci U S A. 2007-8-21

[8]
Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice.

Proc Natl Acad Sci U S A. 2007-7-3

[9]
Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome.

J Neurosci. 2007-5-16

[10]
Receptor-like tyrosine phosphatase PTP10D is required for long-term memory in Drosophila.

J Neurosci. 2007-4-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索