Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor New York, NY, USA.
Front Neural Circuits. 2010 Jan 8;3:22. doi: 10.3389/neuro.04.022.2009. eCollection 2010.
The last decade has witnessed the identification of single-gene defects associated with an impressive number of mental retardation syndromes. Fragile X syndrome, the most common cause of mental retardation for instance, results from disruption of the FMR1 gene. Similarly, Periventricular Nodular Heterotopia, which includes cerebral malformation, epilepsy and cognitive disabilities, derives from disruption of the Filamin A gene. While it remains unclear whether defects in common molecular pathways may underlie the cognitive dysfunction of these various syndromes, defects in cytoskeletal structure nonetheless appear to be common to several mental retardation syndromes. FMR1 is known to interact with Rac, profilin, PAK and Ras, which are associated with dendritic spine defects. In Drosophila, disruptions of the dFmr1 gene impair long-term memory (LTM), and the Filamin A homolog (cheerio) was identified in a behavioral screen for LTM mutants. Thus, we investigated the possible interaction between cheerio and dFmr1 during LTM formation in Drosophila. We show that LTM specifically is defective in dFmr1/cheerio double heterozygotes, while it is normal in single heterozygotes for either dFmr1 or cheerio. In dFmr1 mutants, Filamin (Cheerio) levels are lower than normal after spaced training. These observations support the notion that decreased actin cross-linking may underlie the persistence of long and thin dendritic spines in Fragile X patients and animal models. More generally, our results represent the first demonstration of a genetic interaction between mental retardation genes in an in vivo model system of memory formation.
过去十年见证了许多与智力迟钝综合征相关的单基因缺陷的鉴定。例如,脆性 X 综合征是智力迟钝的最常见原因,它是由 FMR1 基因的破坏引起的。同样,脑室周围结节性异位症,包括脑畸形、癫痫和认知障碍,源自 Filamin A 基因的破坏。虽然尚不清楚常见分子途径的缺陷是否是这些各种综合征认知功能障碍的基础,但细胞骨架结构的缺陷似乎是几种智力迟钝综合征的共同特征。已知 FMR1 与 Rac、原肌球蛋白、PAK 和 Ras 相互作用,这些与树突棘缺陷有关。在果蝇中,dFmr1 基因的破坏会损害长期记忆 (LTM),并且在 LTM 突变体的行为筛选中鉴定出 Filamin A 同源物 (cheerio)。因此,我们研究了果蝇中 LTM 形成过程中 cheerio 和 dFmr1 之间可能的相互作用。我们表明,LTM 在 dFmr1/cheerio 双杂合子中特异性缺陷,而在 dFmr1 或 cheerio 中的单杂合子中则正常。在 dFmr1 突变体中,间隔训练后 Filamin(Cheerio)水平低于正常。这些观察结果支持这样一种观点,即肌动蛋白交联的减少可能是脆性 X 患者和动物模型中长而细的树突棘持续存在的基础。更一般地说,我们的结果代表了在记忆形成的体内模型系统中智力迟钝基因之间遗传相互作用的首次证明。
Front Neural Circuits. 2010-1-8
Ment Retard Dev Disabil Res Rev. 2004
J Neurosci. 2009-2-18
Fly (Austin). 2010
Front Mol Neurosci. 2018-8-8
Front Psychiatry. 2015-6-3
Fly (Austin). 2009
Cell. 2008-10-31
Nat Neurosci. 2008-10
Proc Natl Acad Sci U S A. 2007-8-21
Proc Natl Acad Sci U S A. 2007-7-3