Center for Learning and Memory, University of Texas at Austin, Austin, Texas.
Department of Neuroscience, University of Texas at Austin, Austin, Texas.
J Neurophysiol. 2020 Dec 1;124(6):1766-1773. doi: 10.1152/jn.00494.2020. Epub 2020 Sep 30.
Axo-somatic K channels control action potential output in part by acting in concert with voltage-gated Na channels to set action potential threshold. Slowly inactivating, D-type K channels are enriched at the axo-somatic region of cortical pyramidal neurons of the prefrontal cortex, where they regulate action potential firing. We previously demonstrated that D-type K channels are downregulated in extratelencephalic-projecting (ET) L5 neurons in the medial prefrontal cortex (mPFC) of the -knockout mouse model of fragile X syndrome (FX mice), resulting in a hyperpolarized action potential threshold. To test whether K channel alterations are regulated in a cell-autonomous manner in FXS, we used a virus-mediated approach to restore expression of fragile X mental retardation protein (FMRP) in a small population of prefrontal neurons in male FX mice. Outside-out voltage-clamp recordings revealed a higher D-type K conductance in FMRP-positive ET neurons compared with nearby FMRP-negative ET neurons. FMRP did not affect either rapidly inactivating A-type or noninactivating K conductance. ET neuron patches recorded with FMRP, a truncated form of FMRP that lacks mRNA binding domains, included in the pipette solution had larger D-type K conductance compared with heat-inactivated controls. Viral expression of FMRP in FX mice depolarized action potential threshold to near-wild-type levels in ET neurons. These results suggest that FMRP influences the excitability of ET neurons in the mPFC by regulating somatic D-type K channels in a cell-autonomous, protein-protein-dependent manner. We demonstrate that fragile X mental retardation protein (FMRP), which is absent in fragile X syndrome (FXS), regulates D-type potassium channels in prefrontal cortex L5 pyramidal neurons with subcerebral projections but not in neighboring pyramidal neurons without subcerebral projections. FMRP regulates D-type potassium channels in a protein-protein-dependent manner and rescues action potential threshold in a mouse model of FXS. These findings have implications for how changes in voltage-gated channels contribute to neurodevelopmental disorders.
轴体细胞体钾通道通过与电压门控钠通道协同作用来设定动作电位阈值,从而控制动作电位输出。D 型钾通道具有缓慢失活的特性,在皮质锥体神经元的轴体细胞体区域丰富,在那里它们调节动作电位的发放。我们之前的研究表明,在脆性 X 综合征(FX 小鼠)的 - knockout 小鼠模型的内侧前额叶皮质(mPFC)中的投射到皮质下的(ET)L5 神经元中,D 型钾通道下调,导致动作电位阈值超极化。为了测试 FXS 中钾通道改变是否以细胞自主的方式受到调节,我们使用病毒介导的方法在雄性 FX 小鼠的前额叶神经元中恢复脆弱 X 智力迟钝蛋白(FMRP)的表达。在 FMRP 阳性 ET 神经元中,与附近的 FMRP 阴性 ET 神经元相比,外向电压钳记录显示 D 型钾电导更高。FMRP 不影响快速失活的 A 型或非失活的 K 电导。与热失活对照相比,在 FMRP 存在的 ET 神经元中记录的 ET 神经元补丁,FMRP 是一种缺乏 mRNA 结合结构域的截断形式,包含在玻璃管溶液中,D 型钾电导更大。FX 小鼠中的病毒表达 FMRP 将 ET 神经元的动作电位阈值去极化到接近野生型水平。这些结果表明,FMRP 通过以细胞自主、蛋白-蛋白依赖的方式调节体细胞 D 型钾通道来影响 mPFC 中的 ET 神经元的兴奋性。我们证明,在脆性 X 综合征(FXS)中不存在的脆性 X 智力迟钝蛋白(FMRP)调节具有皮质下投射的前额叶皮层 L5 锥体神经元中的 D 型钾通道,但不调节没有皮质下投射的邻近锥体神经元中的 D 型钾通道。FMRP 以蛋白-蛋白依赖的方式调节 D 型钾通道,并在 FXS 的小鼠模型中挽救动作电位阈值。这些发现对于电压门控通道的变化如何导致神经发育障碍具有重要意义。