Krivitsky Pavel N, Handcock Mark S, Raftery Adrian E, Hoff Peter D
University of Washington, Seattle.
Soc Networks. 2009 Jul 1;31(3):204-213. doi: 10.1016/j.socnet.2009.04.001.
Social network data often involve transitivity, homophily on observed attributes, clustering, and heterogeneity of actor degrees. We propose a latent cluster random effects model to represent all of these features, and we describe a Bayesian estimation method for it. The model is applicable to both binary and non-binary network data. We illustrate the model using two real datasets. We also apply it to two simulated network datasets with the same, highly skewed, degree distribution, but very different network behavior: one unstructured and the other with transitivity and clustering. Models based on degree distributions, such as scale-free, preferential attachment and power-law models, cannot distinguish between these very different situations, but our model does.
社交网络数据通常涉及可传递性、观察属性上的同质性、聚类以及行为者度数的异质性。我们提出了一种潜在聚类随机效应模型来表示所有这些特征,并描述了一种针对它的贝叶斯估计方法。该模型适用于二元和非二元网络数据。我们使用两个真实数据集对该模型进行了说明。我们还将其应用于两个模拟网络数据集,这两个数据集具有相同的、高度偏态的度数分布,但网络行为非常不同:一个是无结构的,另一个具有可传递性和聚类。基于度数分布的模型,如无标度、偏好依附和幂律模型,无法区分这些非常不同的情况,但我们的模型可以。