Department of Applied Statistics, Seoul, Republic of Korea.
Department of Statistics and Data Science, Yonsei University, Seoul, 03722, Republic of Korea.
Psychometrika. 2023 Dec;88(4):1529-1555. doi: 10.1007/s11336-023-09934-5. Epub 2023 Sep 23.
How social networks influence human behavior has been an interesting topic in applied research. Existing methods often utilized scale-level behavioral data (e.g., total number of positive responses) to estimate the influence of a social network on human behavior. This study proposes a novel approach to studying social influence that utilizes item-level behavioral measures. Under the latent space modeling framework, we integrate the two latent spaces for respondents' social network data and item-level behavior measures into a single space we call 'interaction map'. The interaction map visualizes the association between the latent homophily among respondents and their item-level behaviors, revealing differential social influence effects across item-level behaviors. We also measure overall social influence by assessing the impact of the interaction map. We evaluate the properties of the proposed approach via extensive simulation studies and demonstrate the proposed approach with a real data in the context of studying how students' friendship network influences their participation in school activities.
社交网络如何影响人类行为一直是应用研究中的一个有趣话题。现有方法通常利用规模层面的行为数据(例如,正面回复的总数)来估计社交网络对人类行为的影响。本研究提出了一种利用项目层面行为测量来研究社交影响的新方法。在潜在空间建模框架下,我们将受访者社交网络数据和项目层面行为测量的两个潜在空间整合到一个我们称之为“交互图”的单一空间中。交互图可视化了受访者潜在同质性与他们项目层面行为之间的关联,揭示了项目层面行为之间的差异化社交影响效应。我们还通过评估交互图的影响来衡量整体社交影响。我们通过广泛的模拟研究评估了所提出方法的性质,并通过研究学生友谊网络如何影响他们参与学校活动的实际数据来展示所提出方法。