Suppr超能文献

度-度距离的幂律分布:复杂网络无标度特性的更好表示。

Power-law distribution of degree-degree distance: A better representation of the scale-free property of complex networks.

机构信息

School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

Center for Polymer Studies, Boston University, Boston, MA 02215.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14812-14818. doi: 10.1073/pnas.1918901117. Epub 2020 Jun 15.

Abstract

Whether real-world complex networks are scale free or not has long been controversial. Recently, in Broido and Clauset [A. D. Broido, A. Clauset, 10, 1017 (2019)], it was claimed that the degree distributions of real-world networks are rarely power law under statistical tests. Here, we attempt to address this issue by defining a fundamental property possessed by each link, the degree-degree distance, the distribution of which also shows signs of being power law by our empirical study. Surprisingly, although full-range statistical tests show that degree distributions are not often power law in real-world networks, we find that in more than half of the cases the degree-degree distance distributions can still be described by power laws. To explain these findings, we introduce a bidirectional preferential selection model where the link configuration is a randomly weighted, two-way selection process. The model does not always produce solid power-law distributions but predicts that the degree-degree distance distribution exhibits stronger power-law behavior than the degree distribution of a finite-size network, especially when the network is dense. We test the strength of our model and its predictive power by examining how real-world networks evolve into an overly dense stage and how the corresponding distributions change. We propose that being scale free is a property of a complex network that should be determined by its underlying mechanism (e.g., preferential attachment) rather than by apparent distribution statistics of finite size. We thus conclude that the degree-degree distance distribution better represents the scale-free property of a complex network.

摘要

现实世界中的复杂网络是否具有无标度特性一直存在争议。最近,在 Broido 和 Clauset [A. D. Broido, A. Clauset, 10, 1017 (2019)]的研究中,声称通过统计检验,现实世界网络的度分布很少是幂律分布。在这里,我们通过定义每个链路都具有的基本属性,即度-度距离,来尝试解决这个问题。我们的实证研究表明,度-度距离的分布也呈现出幂律分布的特征。令人惊讶的是,尽管全面的统计检验表明现实世界网络中的度分布通常不是幂律分布,但我们发现,在超过一半的情况下,度-度距离分布仍然可以用幂律来描述。为了解释这些发现,我们引入了一个双向优先选择模型,其中链路的配置是一个随机加权的双向选择过程。该模型并不总是产生稳定的幂律分布,但预测度-度距离分布比有限大小网络的度分布表现出更强的幂律行为,特别是在网络密集时。我们通过检验现实网络如何演变成过度密集的阶段以及相应的分布如何变化,来测试我们模型的强度及其预测能力。我们提出,无标度性是复杂网络的一种属性,应该由其底层机制(例如优先连接)决定,而不是由有限大小的明显分布统计决定。因此,我们得出结论,度-度距离分布更好地代表了复杂网络的无标度特性。

相似文献

2
How rare are power-law networks really?幂律网络究竟有多罕见?
Proc Math Phys Eng Sci. 2020 Sep;476(2241):20190742. doi: 10.1098/rspa.2019.0742. Epub 2020 Sep 16.
3
The Analysis of the Power Law Feature in Complex Networks.复杂网络中幂律特征的分析
Entropy (Basel). 2022 Oct 29;24(11):1561. doi: 10.3390/e24111561.
5
True scale-free networks hidden by finite size effects.真实无标度网络隐藏于有限大小效应之下。
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2013825118.
6
Structure of shells in complex networks.复杂网络中壳层的结构
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 2):036105. doi: 10.1103/PhysRevE.80.036105. Epub 2009 Sep 9.
7
Dense power-law networks and simplicial complexes.密集幂律网络与单纯复形。
Phys Rev E. 2018 May;97(5-1):052303. doi: 10.1103/PhysRevE.97.052303.
8
Weighted scale-free networks in Euclidean space using local selection rule.使用局部选择规则的欧几里得空间中的加权无标度网络。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036111. doi: 10.1103/PhysRevE.74.036111. Epub 2006 Sep 22.

引用本文的文献

4
Random Lasers as Social Processes Simulators.作为社会过程模拟器的随机激光器
Entropy (Basel). 2023 Nov 29;25(12):1601. doi: 10.3390/e25121601.
5
Percolation Theories for Quantum Networks.量子网络的渗流理论
Entropy (Basel). 2023 Nov 20;25(11):1564. doi: 10.3390/e25111564.
6
The nature and nurture of network evolution.网络进化的先天与后天因素
Nat Commun. 2023 Nov 3;14(1):7031. doi: 10.1038/s41467-023-42856-5.
8
Seeing through noise in power laws.看穿幂律中的噪声。
J R Soc Interface. 2023 Aug;20(205):20230310. doi: 10.1098/rsif.2023.0310. Epub 2023 Aug 30.
9
Network medicine: an approach to complex kidney disease phenotypes.网络医学:一种复杂肾脏疾病表型的研究方法。
Nat Rev Nephrol. 2023 Jul;19(7):463-475. doi: 10.1038/s41581-023-00705-0. Epub 2023 Apr 11.
10
Mean-field theory of social laser.社会激光的平均场理论。
Sci Rep. 2022 May 20;12(1):8566. doi: 10.1038/s41598-022-12327-w.

本文引用的文献

1
Generalized network dismantling.广义网络拆解
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6554-6559. doi: 10.1073/pnas.1806108116. Epub 2019 Mar 15.
3
Scale-free networks are rare.无标度网络很罕见。
Nat Commun. 2019 Mar 4;10(1):1017. doi: 10.1038/s41467-019-08746-5.
5
Uncovering disassortativity in large scale-free networks.揭示大规模无标度网络中的异配性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022801. doi: 10.1103/PhysRevE.87.022801. Epub 2013 Feb 4.
6
Mathematics. Critical truths about power laws.数学。关于幂律的关键真理。
Science. 2012 Feb 10;335(6069):665-6. doi: 10.1126/science.1216142.
8
Entanglement percolation in quantum complex networks.量子复杂网络中的缠结渗流。
Phys Rev Lett. 2009 Dec 11;103(24):240503. doi: 10.1103/PhysRevLett.103.240503. Epub 2009 Dec 10.
9
Wave localization in complex networks with high clustering.具有高聚类性的复杂网络中的波定位
Phys Rev Lett. 2008 Oct 24;101(17):175702. doi: 10.1103/PhysRevLett.101.175702. Epub 2008 Oct 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验