Suppr超能文献

肿瘤控制概率建模的数据挖掘方法。

Datamining approaches for modeling tumor control probability.

机构信息

Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA.

出版信息

Acta Oncol. 2010 Nov;49(8):1363-73. doi: 10.3109/02841861003649224. Epub 2010 Mar 2.

Abstract

BACKGROUND

Tumor control probability (TCP) to radiotherapy is determined by complex interactions between tumor biology, tumor microenvironment, radiation dosimetry, and patient-related variables. The complexity of these heterogeneous variable interactions constitutes a challenge for building predictive models for routine clinical practice. We describe a datamining framework that can unravel the higher order relationships among dosimetric dose-volume prognostic variables, interrogate various radiobiological processes, and generalize to unseen data before when applied prospectively.

MATERIAL AND METHODS

Several datamining approaches are discussed that include dose-volume metrics, equivalent uniform dose, mechanistic Poisson model, and model building methods using statistical regression and machine learning techniques. Institutional datasets of non-small cell lung cancer (NSCLC) patients are used to demonstrate these methods. The performance of the different methods was evaluated using bivariate Spearman rank correlations (rs). Over-fitting was controlled via resampling methods.

RESULTS

Using a dataset of 56 patients with primary NCSLC tumors and 23 candidate variables, we estimated GTV volume and V75 to be the best model parameters for predicting TCP using statistical resampling and a logistic model. Using these variables, the support vector machine (SVM) kernel method provided superior performance for TCP prediction with an rs=0.68 on leave-one-out testing compared to logistic regression (rs=0.4), Poisson-based TCP (rs=0.33), and cell kill equivalent uniform dose model (rs=0.17).

CONCLUSIONS

The prediction of treatment response can be improved by utilizing datamining approaches, which are able to unravel important non-linear complex interactions among model variables and have the capacity to predict on unseen data for prospective clinical applications.

摘要

背景

肿瘤放疗控制概率(TCP)取决于肿瘤生物学、肿瘤微环境、辐射剂量学和患者相关变量之间的复杂相互作用。这些异质变量相互作用的复杂性构成了为常规临床实践构建预测模型的挑战。我们描述了一个数据挖掘框架,该框架可以揭示剂量-体积预测变量之间的高阶关系,探讨各种放射生物学过程,并在前瞻性应用时推广到未见数据。

材料与方法

讨论了几种数据挖掘方法,包括剂量-体积指标、等效均匀剂量、机械泊松模型以及使用统计回归和机器学习技术的模型构建方法。使用非小细胞肺癌(NSCLC)患者的机构数据集来演示这些方法。使用双变量 Spearman 秩相关系数(rs)评估不同方法的性能。通过重采样方法控制过拟合。

结果

使用 56 例原发性 NSCLC 肿瘤患者和 23 个候选变量的数据集,我们使用统计重采样和逻辑模型估计 GTV 体积和 V75 是预测 TCP 的最佳模型参数。使用这些变量,支持向量机(SVM)核方法在留一法测试中提供了卓越的 TCP 预测性能,rs=0.68,而逻辑回归(rs=0.4)、基于泊松的 TCP(rs=0.33)和细胞杀伤等效均匀剂量模型(rs=0.17)。

结论

通过利用数据挖掘方法可以提高治疗反应的预测,这些方法能够揭示模型变量之间重要的非线性复杂相互作用,并具有预测前瞻性临床应用中未见数据的能力。

相似文献

1
Datamining approaches for modeling tumor control probability.
Acta Oncol. 2010 Nov;49(8):1363-73. doi: 10.3109/02841861003649224. Epub 2010 Mar 2.
4
6
Predicting radiotherapy outcomes using statistical learning techniques.
Phys Med Biol. 2009 Sep 21;54(18):S9-S30. doi: 10.1088/0031-9155/54/18/S02. Epub 2009 Aug 18.
8
A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets.
J Appl Clin Med Phys. 2004 Winter;5(1):50-63. doi: 10.1120/jacmp.v5i1.1970. Epub 2004 Jan 1.
9
Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors.
Int J Radiat Oncol Biol Phys. 2006 Mar 15;64(4):1275-86. doi: 10.1016/j.ijrobp.2005.11.022.
10
Local tumor control probability modeling of primary and secondary lung tumors in stereotactic body radiotherapy.
Radiother Oncol. 2016 Mar;118(3):485-91. doi: 10.1016/j.radonc.2015.09.008. Epub 2015 Sep 15.

引用本文的文献

2
Current status and future developments in predicting outcomes in radiation oncology.
Br J Radiol. 2022 Oct 1;95(1139):20220239. doi: 10.1259/bjr.20220239. Epub 2022 Jul 28.
3
Mathematical model for the thermal enhancement of radiation response: thermodynamic approach.
Sci Rep. 2021 Mar 9;11(1):5503. doi: 10.1038/s41598-021-84620-z.
4
Sample-size calculation for preclinical dose-response experiments using heterogeneous tumour models.
Radiother Oncol. 2021 May;158:262-267. doi: 10.1016/j.radonc.2021.02.032. Epub 2021 Mar 3.
7
Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century.
Br J Radiol. 2020 Feb 1;93(1106):20190855. doi: 10.1259/bjr.20190855.
8
Artificial Neural Network with Composite Architectures for Prediction of Local Control in Radiotherapy.
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):242-249. doi: 10.1109/TRPMS.2018.2884134. Epub 2018 Nov 29.
9
Machine learning and modeling: Data, validation, communication challenges.
Med Phys. 2018 Oct;45(10):e834-e840. doi: 10.1002/mp.12811. Epub 2018 Aug 24.

本文引用的文献

1
Linear quadratic and tumour control probability modelling in external beam radiotherapy.
J Math Biol. 2009 Apr;58(4-5):799-817. doi: 10.1007/s00285-008-0222-y. Epub 2008 Sep 30.
2
The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery.
Semin Radiat Oncol. 2008 Oct;18(4):240-3. doi: 10.1016/j.semradonc.2008.04.005.
3
Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response.
Nat Rev Cancer. 2008 Jun;8(6):425-37. doi: 10.1038/nrc2397.
4
Dose-volume and biological-model based comparison between helical tomotherapy and (inverse-planned) IMAT for prostate tumours.
Radiother Oncol. 2008 Jul;88(1):34-45. doi: 10.1016/j.radonc.2008.03.003. Epub 2008 Apr 7.
5
Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy.
Int J Radiat Oncol Biol Phys. 2008 Mar 1;70(3):847-52. doi: 10.1016/j.ijrobp.2007.10.059.
7
Analytic investigation into effect of population heterogeneity on parameter ratio estimates.
Int J Radiat Oncol Biol Phys. 2007 Nov 15;69(4):1323-30. doi: 10.1016/j.ijrobp.2007.07.2355. Epub 2007 Sep 20.
8
High radiation dose may reduce the negative effect of large gross tumor volume in patients with medically inoperable early-stage non-small cell lung cancer.
Int J Radiat Oncol Biol Phys. 2007 May 1;68(1):103-10. doi: 10.1016/j.ijrobp.2006.11.051. Epub 2007 Mar 23.
9
Retrospective monte carlo dose calculations with limited beam weight information.
Med Phys. 2007 Jan;34(1):334-46. doi: 10.1118/1.2400826.
10
Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships.
Phys Med Biol. 2006 Nov 21;51(22):5719-35. doi: 10.1088/0031-9155/51/22/001. Epub 2006 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验