Suppr超能文献

基于机器学习的儿科急性淋巴细胞白血病患者颅放疗预测:MAHAK 医院的案例研究。

Prediction of Cranial Radiotherapy Treatment in Pediatric Acute Lymphoblastic Leukemia Patients Using Machine Learning: A Case Study at MAHAK Hospital.

机构信息

School of Industrial and Systems Engineering, Tarbiat Modares University (TMU), Tehran, Iran.

Mahak Hematology Oncology Research Center (Mahak-HORC), Mahak Hospital, Tehran, Iran.

出版信息

Asian Pac J Cancer Prev. 2020 Nov 1;21(11):3211-3219. doi: 10.31557/APJCP.2020.21.11.3211.

Abstract

BACKGROUND

Acute Lymphoblastic Leukemia (ALL) is the most common blood disease in children and is responsible for the most deaths amongst children. Due to major improvements in the treatment protocols in the 50-years period, the survivability of this disease has witnessed dramatic rise until this date which is about 90 percent. There are many investigations tending to indicate the efficiency of cranial radiotherapy found out that without that, outcome of the patients did not change and even it improved at some cases.

METHODS

the main aim of this study is predicting cranial radiotherapy treatment in pediatric acute lymphoblastic leukemia patients using machine learning. Scope of this paper is intertwined with predicting the necessity of one of the treatment modalities that has been used for many years for this group of patients named Cranial Radiotherapy (CRT). For this purpose, a case study is considered at Mahak charity hospital. In this paper, our focus is on ALL patients aged 0 to 17 treated at Mahak hospital, one of the best centers for treatment of childhood malignancies in Iran. Dataset analyzed in this study is gathered by the research team from patient's paper-based files. Our dataset consists of 241 observations on patients with 31 attributes after the data cleaning process. Our designed machine learning model for predicting cranial radiotherapy treatment in pediatric acute lymphoblastic leukemia patients is a stacked ensemble classifier of independently strong models with a meta-learner to tune the weights and parameters of the base classifiers.

RESULTS

The stacked ensemble classifier show highly reasonable performance with AUC of 87.52%. Moreover, the attributes are ranked based on their predictive power and the most important variable for CRT necessity prediction is the disease relapse.

CONCLUSION

In order to conclude, derived from previous studies regarding CRT it is not only cost-effective but also more healthy to eradicate the use of CRT for the treatment of childhood ALL. Furthermore, it is valuable to increase the clinical databases by creating more synthetic health databases not only for research purposes but also for physicians to keep track of their patient's status.   
.

摘要

背景

急性淋巴细胞白血病(ALL)是儿童中最常见的血液疾病,也是导致儿童死亡的主要原因。由于在过去 50 年中治疗方案的重大改进,这种疾病的存活率急剧上升,截至目前约为 90%。许多研究都倾向于表明颅放疗的有效性,结果发现,如果不进行颅放疗,患者的治疗效果并没有改变,甚至在某些情况下还会有所改善。

方法

本研究的主要目的是使用机器学习预测儿科急性淋巴细胞白血病患者的颅放疗治疗。本文的范围与预测一种已经在该组患者中使用多年的治疗方式的必要性交织在一起,这种治疗方式被称为颅放疗(CRT)。为此,在 Mahak 慈善医院进行了一项案例研究。在本文中,我们的重点是在 Mahak 医院治疗的年龄在 0 至 17 岁的 ALL 患者,该医院是伊朗治疗儿童恶性肿瘤的最佳中心之一。本研究分析的数据集是由研究团队从患者的纸质文件中收集的。我们的数据集在数据清理过程后由 241 个观察值和 31 个属性组成。我们设计的用于预测儿科急性淋巴细胞白血病患者颅放疗治疗的机器学习模型是一个由独立强大模型组成的堆叠集成分类器,其中有一个元学习器来调整基础分类器的权重和参数。

结果

堆叠集成分类器的 AUC 为 87.52%,表现出非常合理的性能。此外,根据其预测能力对属性进行了排序,对于 CRT 必要性预测最重要的变量是疾病复发。

结论

总之,从之前关于 CRT 的研究中得出,消除 CRT 治疗儿童 ALL 不仅具有成本效益,而且更有益于健康。此外,通过创建更多的合成健康数据库来增加临床数据库不仅对研究有价值,而且对医生跟踪患者的状况也有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efd7/8033115/20ab9e76fb6a/APJCP-21-3211-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验