Suppr超能文献

用于预测放射治疗局部控制的具有复合架构的人工神经网络

Artificial Neural Network with Composite Architectures for Prediction of Local Control in Radiotherapy.

作者信息

Cui Sunan, Luo Yi, Hsin Tseng Huan, Ten Haken Randall K, El Naqa Issam

机构信息

Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA,

Department of Radiation Oncology, University of Michigan, Medical School, MI 48103, USA,

出版信息

IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):242-249. doi: 10.1109/TRPMS.2018.2884134. Epub 2018 Nov 29.

Abstract

In this study, we investigated the application of artificial neural networks (ANNs) with composite architectures into the prediction of local control (LC) of lung cancer patients after radiotherapy. The motivation of this study was to take advantage of the temporal associations among longitudinal (sequential) data to improve the predictive performance of outcome models under the circumstance of limited sample sizes. Two composite architectures: (1) a one dimension (1D) convolutional + fully connected and (2) a locally-connected+ fully connected architectures were implemented for this purpose. Compared with the fully-connected architecture (multi-layer perceptron [MLP]), our composite architectures yielded better predictive performance of LC in lung cancer patients who received radiotherapy. Specifically, in a cohort of 98 patients (29 patients failed locally), the composite architecture of 1D convolutional layers and fully-connected layers achieved an AUC (area under receiver operating characteristic curve) of 0.83 (95% confidence interval (CI): 0.8070.841) with 18 features (14 features are longitudinal data). Whereas, the composite architecture of locally- connected layers and fully-connected layers achieved an AUC of 0.80 (95%CI: 0.7750.811). Both outperformed an MLP in the prediction performance with the same set of features, which achieved an AUC of 0.78 (95%CI: 0.751~0.790); (P-values for differences in AUC using the DeLong tests were 1.609 × 10and 1.407 × 10, respectively).

摘要

在本研究中,我们调查了具有复合架构的人工神经网络(ANN)在预测肺癌患者放疗后局部控制(LC)方面的应用。本研究的动机是利用纵向(序列)数据之间的时间关联,以在样本量有限的情况下提高结局模型的预测性能。为此实现了两种复合架构:(1)一维(1D)卷积+全连接架构,以及(2)局部连接+全连接架构。与全连接架构(多层感知器[MLP])相比,我们的复合架构在接受放疗的肺癌患者中对LC产生了更好的预测性能。具体而言,在一个包含98名患者的队列中(29名患者局部失败),1D卷积层和全连接层的复合架构利用18个特征(14个特征为纵向数据)实现了0.83的受试者操作特征曲线下面积(AUC)(95%置信区间[CI]:0.8070.841)。而局部连接层和全连接层的复合架构实现了0.80的AUC(95%CI:0.7750.811)。在使用相同特征集的预测性能方面,这两种架构均优于MLP,后者实现了0.78的AUC(95%CI:0.751~0.790);(使用DeLong检验的AUC差异的P值分别为1.609×10和1.407×10)。

相似文献

3
Using Local Convolutional Neural Networks for Genomic Prediction.使用局部卷积神经网络进行基因组预测。
Front Genet. 2020 Nov 12;11:561497. doi: 10.3389/fgene.2020.561497. eCollection 2020.
5
Glaucoma detection based on deep convolutional neural network.基于深度卷积神经网络的青光眼检测
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:715-8. doi: 10.1109/EMBC.2015.7318462.
6
Predicting post-stroke pneumonia using deep neural network approaches.使用深度神经网络方法预测卒中后肺炎。
Int J Med Inform. 2019 Dec;132:103986. doi: 10.1016/j.ijmedinf.2019.103986. Epub 2019 Oct 1.
8
Convolution in Convolution for Network in Network.卷积神经网络中的卷积
IEEE Trans Neural Netw Learn Syst. 2018 May;29(5):1587-1597. doi: 10.1109/TNNLS.2017.2676130. Epub 2017 Mar 16.

引用本文的文献

本文引用的文献

1
Mastering the game of Go without human knowledge.无需人类知识即可掌握围棋游戏。
Nature. 2017 Oct 18;550(7676):354-359. doi: 10.1038/nature24270.
2
Big Data Analytics for Prostate Radiotherapy.用于前列腺放射治疗的大数据分析
Front Oncol. 2016 Jun 14;6:149. doi: 10.3389/fonc.2016.00149. eCollection 2016.
3
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
8
Datamining approaches for modeling tumor control probability.肿瘤控制概率建模的数据挖掘方法。
Acta Oncol. 2010 Nov;49(8):1363-73. doi: 10.3109/02841861003649224. Epub 2010 Mar 2.
9
Role of eotaxin-1 signaling in ovarian cancer.嗜酸性粒细胞趋化因子-1信号通路在卵巢癌中的作用。
Clin Cancer Res. 2009 Apr 15;15(8):2647-56. doi: 10.1158/1078-0432.CCR-08-2024. Epub 2009 Apr 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验