Suppr超能文献

电场重塑导致 K+通道电压传感器的电压敏感性降低。

Reduced voltage sensitivity in a K+-channel voltage sensor by electric field remodeling.

机构信息

Departamento de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2349400, Chile.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5178-83. doi: 10.1073/pnas.1000963107. Epub 2010 Mar 1.

Abstract

Propagation of the nerve impulse relies on the extreme voltage sensitivity of Na(+) and K(+) channels. The transmembrane movement of four arginine residues, located at the fourth transmembrane segment (S4), in each of their four voltage-sensing domains is mostly responsible for the translocation of 12 to 13 e(o) across the transmembrane electric field. Inserting additional positively charged residues between the voltage-sensing arginines in S4 would, in principle, increase voltage sensitivity. Here we show that either positively or negatively charged residues added between the two most external sensing arginines of S4 decreased voltage sensitivity of a Shaker voltage-gated K(+)-channel by up to approximately 50%. The replacement of Val363 with a charged residue displaced inwardly the external boundaries of the electric field by at least 6 A, leaving the most external arginine of S4 constitutively exposed to the extracellular space and permanently excluded from the electric field. Both the physical trajectory of S4 and its electromechanical coupling to open the pore gate seemed unchanged. We propose that the separation between the first two sensing charges at resting is comparable to the thickness of the low dielectric transmembrane barrier they must cross. Thus, at most a single sensing arginine side chain could be found within the field. The conserved hydrophobic nature of the residues located between the voltage-sensing arginines in S4 may shape the electric field geometry for optimal voltage sensitivity in voltage-gated ion channels.

摘要

神经冲动的传播依赖于钠离子(Na(+))和钾离子(K(+))通道的极端电压敏感性。位于每个电压传感域的第四个跨膜片段(S4)中的四个精氨酸残基的跨膜运动主要负责在跨膜电场中转运 12 到 13 个电子(e(o))。在 S4 中的电压传感精氨酸之间插入额外的带正电荷的残基,原则上会增加电压敏感性。在这里,我们表明,在 S4 中两个最外部的传感精氨酸之间添加带正电荷或带负电荷的残基,可使 Shaker 电压门控 K(+)通道的电压敏感性降低约 50%。用带电荷的残基替换 Val363 至少将电场的外部边界向内移动 6Å,使 S4 的最外部精氨酸始终暴露在细胞外空间并永久排除在电场之外。S4 的物理轨迹及其与打开孔门的机电偶联似乎没有变化。我们提出,在静息状态下,前两个传感电荷之间的分离与它们必须穿过的低介电跨膜屏障的厚度相当。因此,在电场中最多只能找到一个传感精氨酸侧链。位于 S4 中电压传感精氨酸之间的保守疏水性残基可能会形成电场几何形状,以实现电压门控离子通道的最佳电压敏感性。

相似文献

引用本文的文献

8
Linkage analysis reveals allosteric coupling in Kir2.1 channels.连锁分析揭示 Kir2.1 通道的变构偶联。
J Gen Physiol. 2018 Nov 5;150(11):1541-1553. doi: 10.1085/jgp.201812127. Epub 2018 Oct 16.

本文引用的文献

2
Biophysical dissection of membrane proteins.膜蛋白的生物物理剖析
Nature. 2009 May 21;459(7245):344-6. doi: 10.1038/nature08142.
6
How membrane proteins sense voltage.膜蛋白如何感知电压。
Nat Rev Mol Cell Biol. 2008 Apr;9(4):323-32. doi: 10.1038/nrm2376.
10
Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment.膜环境中Kv1.2电压门控钾离子通道的动力学
Biophys J. 2007 Nov 1;93(9):3070-82. doi: 10.1529/biophysj.107.112540. Epub 2007 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验