Suppr超能文献

计算设计的 retroaldolase 酶的催化起源。

Origins of catalysis by computationally designed retroaldolase enzymes.

机构信息

Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4937-42. doi: 10.1073/pnas.0913638107. Epub 2010 Mar 1.

Abstract

We have investigated recently reported computationally designed retroaldolase enzymes with the goal of understanding the extent and the origins of their catalytic power. Direct comparison of the designed enzymes to primary amine catalysts in solution revealed a rate acceleration of 10(5)-fold for the most active of the designed retroaldolases. Through pH-rate studies of the designed retroaldolases and evaluation of a Brønsted correlation for a series of amine catalysts, we found that lysine pK(a) values are shifted by 3-4 units in the enzymes but that the catalytic contributions from the shifted pK(a) values are estimated to be modest, about 10-fold. For the most active of the reported enzymes, we evaluated the catalytic contribution of two other design components: a motif intended to stabilize a bound water molecule and hydrophobic substrate binding interactions. Mutational analysis suggested that the bound water motif does not contribute to the rate acceleration. Comparison of the rate acceleration of the designed substrate relative to a minimal substrate suggested that hydrophobic substrate binding interactions contribute around 10(3)-fold to the enzymatic rate acceleration. Altogether, these results suggest that substrate binding interactions and shifting the pK(a) of the catalytic lysine can account for much of the enzyme's rate acceleration. Additional observations suggest that these interactions are limited in the specificity of placement of substrate and active site catalytic groups. Thus, future design efforts may benefit from a focus on achieving precision in binding interactions and placement of catalytic groups.

摘要

我们最近研究了报道的经过计算设计的 retroaldolase 酶,目的是了解它们的催化能力的程度和来源。将设计的酶与溶液中的伯胺催化剂直接进行比较,发现最活跃的设计 retroaldolase 的反应速率提高了 10^5 倍。通过对设计 retroaldolase 的 pH-速率研究和对一系列胺催化剂的 Brønsted 相关性评估,我们发现赖氨酸的 pK(a)值在酶中移动了 3-4 个单位,但从移动的 pK(a)值中获得的催化贡献估计适度,约为 10 倍。对于报道的最活跃的酶,我们评估了另外两个设计成分的催化贡献:一个旨在稳定结合水分子的模体和疏水的底物结合相互作用。突变分析表明,结合水模体对速率加速没有贡献。与最小底物相比,设计底物的速率加速表明疏水的底物结合相互作用对酶促速率加速贡献约为 10^3 倍。总的来说,这些结果表明,底物结合相互作用和催化赖氨酸的 pK(a)值的移动可以解释酶的大部分速率加速。其他观察结果表明,这些相互作用在底物和活性位点催化基团的位置特异性方面存在限制。因此,未来的设计工作可能受益于专注于实现结合相互作用和催化基团的精确性。

相似文献

1
Origins of catalysis by computationally designed retroaldolase enzymes.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4937-42. doi: 10.1073/pnas.0913638107. Epub 2010 Mar 1.
2
Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.
J Mol Biol. 2014 Jan 9;426(1):256-71. doi: 10.1016/j.jmb.2013.10.012. Epub 2013 Oct 23.
3
The effect of the hydrophobic environment on the retro-aldol reaction: comparison to a computationally-designed enzyme.
Org Biomol Chem. 2013 Dec 28;11(48):8419-25. doi: 10.1039/c3ob41898g. Epub 2013 Nov 5.
4
Design of an allosterically regulated retroaldolase.
Protein Sci. 2015 Apr;24(4):561-70. doi: 10.1002/pro.2622. Epub 2015 Jan 13.
5
Chemoselective Henry Condensations Catalyzed by Artificial Carboligases.
Chemistry. 2017 May 2;23(25):6001-6003. doi: 10.1002/chem.201605757. Epub 2017 Jan 30.
6
Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
Eur J Biochem. 2000 Mar;267(6):1858-68. doi: 10.1046/j.1432-1327.2000.01191.x.
8
Structural analyses of covalent enzyme-substrate analog complexes reveal strengths and limitations of de novo enzyme design.
J Mol Biol. 2012 Jan 20;415(3):615-25. doi: 10.1016/j.jmb.2011.10.043. Epub 2011 Nov 3.
9
Immune versus natural selection: antibody aldolases with enzymic rates but broader scope.
Science. 1997 Dec 19;278(5346):2085-92. doi: 10.1126/science.278.5346.2085.
10
Fast Knoevenagel Condensations Catalyzed by an Artificial Schiff-Base-Forming Enzyme.
J Am Chem Soc. 2016 Jun 8;138(22):6972-4. doi: 10.1021/jacs.6b00816. Epub 2016 May 31.

引用本文的文献

1
Complete Computational Reaction Mechanism for Foldamer-Catalyzed Aldol Condensation.
ACS Catal. 2024 May 17;14(10):7624-7638. doi: 10.1021/acscatal.4c00937. Epub 2024 May 1.
2
Protein Dynamics and Enzymatic Catalysis.
J Phys Chem B. 2023 Mar 30;127(12):2649-2660. doi: 10.1021/acs.jpcb.3c00477. Epub 2023 Mar 21.
4
High throughput and quantitative enzymology in the genomic era.
Curr Opin Struct Biol. 2021 Dec;71:259-273. doi: 10.1016/j.sbi.2021.07.010. Epub 2021 Sep 27.
5
Identification of Thermal Conduits That Link the Protein-Water Interface to the Active Site Loop and Catalytic Base in Enolase.
J Am Chem Soc. 2021 Jan 20;143(2):785-797. doi: 10.1021/jacs.0c09423. Epub 2021 Jan 4.
6
The evolution of multiple active site configurations in a designed enzyme.
Nat Commun. 2018 Sep 25;9(1):3900. doi: 10.1038/s41467-018-06305-y.
7
Conformational dynamics and enzyme evolution.
J R Soc Interface. 2018 Jul;15(144). doi: 10.1098/rsif.2018.0330.
8
Role of conformational dynamics in the evolution of novel enzyme function.
Chem Commun (Camb). 2018 Jun 19;54(50):6622-6634. doi: 10.1039/c8cc02426j.
9
Role of Conformational Dynamics in the Evolution of Retro-Aldolase Activity.
ACS Catal. 2017 Dec 1;7(12):8524-8532. doi: 10.1021/acscatal.7b02954. Epub 2017 Nov 3.
10
Catalytic diversity in self-propagating peptide assemblies.
Nat Chem. 2017 Aug;9(8):805-809. doi: 10.1038/nchem.2738. Epub 2017 Feb 27.

本文引用的文献

1
The influence of protein dynamics on the success of computational enzyme design.
J Am Chem Soc. 2009 Oct 7;131(39):14111-5. doi: 10.1021/ja905396s.
2
The origin of the electrostatic perturbation in acetoacetate decarboxylase.
Nature. 2009 May 21;459(7245):393-7. doi: 10.1038/nature07938.
3
Challenges in the computational design of proteins.
J R Soc Interface. 2009 Aug 6;6 Suppl 4(Suppl 4):S477-91. doi: 10.1098/rsif.2008.0508.focus. Epub 2009 Mar 11.
4
A rationally designed aldolase foldamer.
Angew Chem Int Ed Engl. 2009;48(5):922-5. doi: 10.1002/anie.200804996.
5
Kemp elimination catalysts by computational enzyme design.
Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.
6
De novo computational design of retro-aldol enzymes.
Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.
7
Potential energy functions for protein design.
Curr Opin Struct Biol. 2007 Apr;17(2):199-204. doi: 10.1016/j.sbi.2007.03.006. Epub 2007 Mar 26.
8
New algorithms and an in silico benchmark for computational enzyme design.
Protein Sci. 2006 Dec;15(12):2785-94. doi: 10.1110/ps.062353106.
9
Combinatorial methods for small-molecule placement in computational enzyme design.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16710-5. doi: 10.1073/pnas.0607691103. Epub 2006 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验