Suppr超能文献

疏水环境对逆醛醇反应的影响:与计算设计酶的比较。

The effect of the hydrophobic environment on the retro-aldol reaction: comparison to a computationally-designed enzyme.

机构信息

College of Charleston, Department of Chemistry and Biochemistry, 66 George Street, Charleston, SC 29424, USA.

出版信息

Org Biomol Chem. 2013 Dec 28;11(48):8419-25. doi: 10.1039/c3ob41898g. Epub 2013 Nov 5.

Abstract

Recent work on a computationally-designed retroaldolase RA-61 suggested that most of the rate-acceleration brought about by this enzyme was due to non-specific interactions with the aromatic substrate. To provide a benchmark for the role of non-specific interactions in this system, we measured the second-order rate constant for the amine-catalysed retro-aldol reaction of methodol in the presence of non-specific hydrophobic pockets such as micelles. We found that a simple micellar system, that consists of a positively-charged surfactant and a long-chain amine, can accelerate the retro-aldol reaction of methodol by 9500-fold. This effect rivals the 10(5)-fold rate acceleration of RA-61. Similar results were obtained with BSA used as the catalyst, implying that the retro-aldol reaction of methodol can be greatly accelerated by non-specific hydrophobic pockets that contain an amino group.

摘要

最近一项针对计算机设计的 retroaldolase RA-61 的研究表明,该酶带来的大部分速率加速是由于与芳香族底物的非特异性相互作用。为了为该系统中非特异性相互作用的作用提供基准,我们测量了在存在非特异性疏水口袋(如胶束)的情况下,methanolol 的胺催化 retro-aldol 反应的二级速率常数。我们发现,一个简单的胶束体系,由带正电荷的表面活性剂和长链胺组成,可以使 methanolol 的 retro-aldol 反应加速 9500 倍。这种效果可与 RA-61 的 10(5)倍速率加速相媲美。使用 BSA 作为催化剂时也得到了类似的结果,这意味着含有氨基的非特异性疏水口袋可以大大加速 methanolol 的 retro-aldol 反应。

相似文献

1
The effect of the hydrophobic environment on the retro-aldol reaction: comparison to a computationally-designed enzyme.
Org Biomol Chem. 2013 Dec 28;11(48):8419-25. doi: 10.1039/c3ob41898g. Epub 2013 Nov 5.
2
Origins of catalysis by computationally designed retroaldolase enzymes.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4937-42. doi: 10.1073/pnas.0913638107. Epub 2010 Mar 1.
3
Engineering stereocontrol into an aldolase-catalysed reaction.
Chem Commun (Camb). 2005 Jan 7(1):124-6. doi: 10.1039/b413255f. Epub 2004 Nov 23.
4
Varying the Directionality of Protein Catalysts for Aldol and Retro-Aldol Reactions.
Chembiochem. 2022 Jan 19;23(2):e202100435. doi: 10.1002/cbic.202100435. Epub 2021 Nov 11.
5
Aldolase activity of serum albumins.
Org Biomol Chem. 2011 Jun 21;9(12):4417-20. doi: 10.1039/c0ob01219j. Epub 2011 May 11.
6
Design of an allosterically regulated retroaldolase.
Protein Sci. 2015 Apr;24(4):561-70. doi: 10.1002/pro.2622. Epub 2015 Jan 13.
7
Fluorescence modulation and associative behavior of lumazine in hydrophobic domain of micelles and bovine serum albumin.
J Photochem Photobiol B. 2013 Apr 5;121:37-45. doi: 10.1016/j.jphotobiol.2013.02.008. Epub 2013 Feb 26.
9
Role of (single/double chain surfactant) micelles on the protein aggregation.
Int J Biol Macromol. 2019 Feb 1;122:72-81. doi: 10.1016/j.ijbiomac.2018.10.145. Epub 2018 Oct 21.
10
A QM/MM study on the origin of retro-aldolase activity of a catalytic antibody.
Chem Commun (Camb). 2021 May 27;57(43):5306-5309. doi: 10.1039/d1cc01081f.

引用本文的文献

2
Keep on moving: discovering and perturbing the conformational dynamics of enzymes.
Acc Chem Res. 2015 Feb 17;48(2):423-30. doi: 10.1021/ar5003158. Epub 2014 Dec 24.
3
Design of an allosterically regulated retroaldolase.
Protein Sci. 2015 Apr;24(4):561-70. doi: 10.1002/pro.2622. Epub 2015 Jan 13.

本文引用的文献

1
Evolution of a designed retro-aldolase leads to complete active site remodeling.
Nat Chem Biol. 2013 Aug;9(8):494-8. doi: 10.1038/nchembio.1276. Epub 2013 Jun 9.
2
Computational enzyme design.
Angew Chem Int Ed Engl. 2013 May 27;52(22):5700-25. doi: 10.1002/anie.201204077. Epub 2013 Mar 25.
3
Computational design of a Diels-Alderase from a thermophilic esterase: the importance of dynamics.
J Comput Aided Mol Des. 2012 Sep;26(9):1079-95. doi: 10.1007/s10822-012-9601-y. Epub 2012 Sep 16.
4
Robust design and optimization of retroaldol enzymes.
Protein Sci. 2012 May;21(5):717-26. doi: 10.1002/pro.2059. Epub 2012 Mar 30.
5
Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis.
Nat Chem Biol. 2012 Feb 5;8(3):294-300. doi: 10.1038/nchembio.777.
6
Structural analyses of covalent enzyme-substrate analog complexes reveal strengths and limitations of de novo enzyme design.
J Mol Biol. 2012 Jan 20;415(3):615-25. doi: 10.1016/j.jmb.2011.10.043. Epub 2011 Nov 3.
7
Aldolase activity of serum albumins.
Org Biomol Chem. 2011 Jun 21;9(12):4417-20. doi: 10.1039/c0ob01219j. Epub 2011 May 11.
8
Conformational diversity and computational enzyme design.
Curr Opin Chem Biol. 2010 Oct;14(5):676-82. doi: 10.1016/j.cbpa.2010.08.010. Epub 2010 Sep 7.
9
Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction.
Science. 2010 Jul 16;329(5989):309-13. doi: 10.1126/science.1190239.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验