Department of Biochemistry, Duke University, DUMC Box 3711, Durham, NC 27710, USA.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4908-13. doi: 10.1073/pnas.0910421107. Epub 2010 Mar 1.
The Gibbs free energy difference between native and unfolded states ("stability") is one of the fundamental characteristics of a protein. By exploiting the thermodynamic linkage between ligand binding and stability, interactions of a protein with small molecules, nucleic acids, or other proteins can be detected and quantified. Determination of protein stability can therefore provide a universal monitor of biochemical function. Yet, the use of stability measurements as a functional probe is underutilized, because such experiments traditionally require large amounts of protein and special instrumentation. Here we present the quantitative cysteine reactivity (QCR) technique to determine protein stabilities rapidly and accurately using only picomole quantities of material and readily accessible laboratory equipment. We demonstrate that QCR-derived stabilities can be used to measure ligand binding over a wide range of ligand concentrations and affinities. We anticipate that this technique will have broad applications in high-throughput protein engineering experiments and functional genomics.
天然状态和展开状态之间的吉布斯自由能差(“稳定性”)是蛋白质的基本特征之一。通过利用配体结合与稳定性之间的热力学联系,可以检测和定量蛋白质与小分子、核酸或其他蛋白质的相互作用。因此,蛋白质稳定性的测定可以作为生化功能的通用监测手段。然而,由于此类实验传统上需要大量的蛋白质和特殊的仪器,因此稳定性测量作为功能探针的应用尚未得到充分利用。在这里,我们提出了定量半胱氨酸反应性(QCR)技术,仅使用皮摩尔数量的材料和易于获得的实验室设备即可快速准确地测定蛋白质稳定性。我们证明,QCR 衍生的稳定性可用于在广泛的配体浓度和亲和力范围内测量配体结合。我们预计,该技术将在高通量蛋白质工程实验和功能基因组学中具有广泛的应用。