文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RNA-seq 数据差异表达分析的缩放标准化方法。

A scaling normalization method for differential expression analysis of RNA-seq data.

机构信息

Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Australia.

出版信息

Genome Biol. 2010;11(3):R25. doi: 10.1186/gb-2010-11-3-r25. Epub 2010 Mar 2.


DOI:10.1186/gb-2010-11-3-r25
PMID:20196867
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2864565/
Abstract

The fine detail provided by sequencing-based transcriptome surveys suggests that RNA-seq is likely to become the platform of choice for interrogating steady state RNA. In order to discover biologically important changes in expression, we show that normalization continues to be an essential step in the analysis. We outline a simple and effective method for performing normalization and show dramatically improved results for inferring differential expression in simulated and publicly available data sets.

摘要

基于测序的转录组调查提供的详细信息表明,RNA-seq 可能成为研究稳态 RNA 的首选平台。为了发现表达中具有生物学重要意义的变化,我们表明标准化仍然是分析中的一个重要步骤。我们概述了一种简单有效的标准化方法,并在模拟和公开可用的数据集上展示了显著改进的推断差异表达的结果。

相似文献

[1]
A scaling normalization method for differential expression analysis of RNA-seq data.

Genome Biol. 2010-3-2

[2]
A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.

PLoS One. 2017-5-1

[3]
Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies.

BMC Genomics. 2020-1-28

[4]
Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis.

Brief Bioinform. 2018-1-1

[5]
Data Analysis in Single-Cell Transcriptome Sequencing.

Methods Mol Biol. 2018

[6]
Transcriptome Sequencing: RNA-Seq.

Methods Mol Biol. 2018

[7]
Group A Streptococcus Transcriptome Analysis.

Methods Mol Biol. 2020

[8]
NORMSEQ: a tool for evaluation, selection and visualization of RNA-Seq normalization methods.

Nucleic Acids Res. 2023-7-5

[9]
Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data.

PLoS One. 2020-4-30

[10]
RNA-Seq: revelation of the messengers.

Trends Plant Sci. 2013-3-5

引用本文的文献

[1]
Multicellular tumor-stromal interactions recapitulate aspects of therapeutic response and human oncogenic signaling in a 3D disease model for H3K27M-altered DIPG.

Oncogene. 2025-9-6

[2]
Alternative splicing drives a dynamic transcriptomic response during programmed cell death.

Microb Cell. 2025-8-26

[3]
TrueProbes: Quantitative Single-Molecule RNA-FISH Probe Design Improves RNA Detection.

bioRxiv. 2025-8-19

[4]
Microbiome data integration via shared dictionary learning.

Nat Commun. 2025-9-1

[5]
mbSparse: an autoencoder-based imputation method to address sparsity in microbiome data.

Gut Microbes. 2025-12

[6]
Adipose tissue gene expression and longitudinal clinical phenotypes are early biomarkers of lipid-regulating drug usage.

Sci Rep. 2025-8-29

[7]
Safety and efficacy of a STAT3-targeted cyclic oligonucleotide: From murine models to a phase 1 clinical trial in pet cats with oral cancer.

Cancer Cell. 2025-8-4

[8]
Analysis of salivary proteins in gall-inducing psylla and their potential influence on host plants.

BMC Genomics. 2025-8-28

[9]
Blood Microbiome Analysis Reveals Biomarkers of Treatment Response in Drug-Naïve Patients with First-Episode Psychosis: A Pilot Study.

Microorganisms. 2025-8-19

[10]
Deciphering the Diagnostic Potential of Small Non-Coding RNAs for the Detection of Pancreatic Ductal Adenocarcinoma Through Liquid Biopsies.

Int J Mol Sci. 2025-8-21

本文引用的文献

[1]
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.

Bioinformatics. 2009-11-11

[2]
Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data.

Genome Biol. 2009-7-22

[3]
Transcript length bias in RNA-seq data confounds systems biology.

Biol Direct. 2009-4-16

[4]
PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls.

Nat Biotechnol. 2009-1

[5]
Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model.

Proc Natl Acad Sci U S A. 2008-12-23

[6]
Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain.

PLoS One. 2008

[7]
RNA-Seq: a revolutionary tool for transcriptomics.

Nat Rev Genet. 2009-1

[8]
Alternative isoform regulation in human tissue transcriptomes.

Nature. 2008-11-27

[9]
Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms.

Nucleic Acids Res. 2008-12

[10]
In-depth characterization of the microRNA transcriptome in a leukemia progression model.

Genome Res. 2008-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索