Suppr超能文献

拟南芥光系统 II 天线耗散对激发能传递的影响。

Effect of antenna-depletion in Photosystem II on excitation energy transfer in Arabidopsis thaliana.

机构信息

Wageningen University, The Netherlands.

出版信息

Biophys J. 2010 Mar 3;98(5):922-31. doi: 10.1016/j.bpj.2009.11.012.

Abstract

The role of individual photosynthetic antenna complexes of Photosystem II (PSII) both in membrane organization and excitation energy transfer have been investigated. Thylakoid membranes from wild-type Arabidopsis thaliana, and three mutants lacking light-harvesting complexes CP24, CP26, or CP29, respectively, were studied by picosecond-fluorescence spectroscopy. By using different excitation/detection wavelength combinations it was possible for the first time, to our knowledge, to separate PSI and PSII fluorescence kinetics. The sub-100 ps component, previously ascribed entirely to PSI, turns out to be due partly to PSII. Moreover, the migration time of excitations from antenna to PSII reaction center (RC) was determined for the first time, to our knowledge, for thylakoid membranes. It is four times longer than for PSII-only membranes, due to additional antenna complexes, which are less well connected to the RC. The results in the absence of CP26 are very similar to those of wild-type, demonstrating that the PSII organization is not disturbed. However, the kinetics in the absence of CP29 and, especially, of CP24 show that a large fraction of the light-harvesting complexes becomes badly connected to the RCs. Interestingly, the excited-state lifetimes of the disconnected light-harvesting complexes seem to be substantially quenched.

摘要

已经研究了光合作用系统 II(PSII)的个体光合天线复合物在膜组织和激发能量转移中的作用。通过皮秒荧光光谱法研究了野生型拟南芥的类囊体膜,以及分别缺乏光捕获复合物 CP24、CP26 或 CP29 的三种突变体。通过使用不同的激发/检测波长组合,我们首次能够(据我们所知)分离 PSI 和 PSII 荧光动力学。之前完全归因于 PSI 的 100 皮秒以下成分现在部分归因于 PSII。此外,我们首次(据我们所知)确定了天线到 PSII 反应中心(RC)的激发迁移时间,对于类囊体膜来说,这一时间要长得多,这是由于存在更多的天线复合物,它们与 RC 的连接不那么紧密。在没有 CP26 的情况下的结果与野生型非常相似,表明 PSII 的组织没有受到干扰。然而,在没有 CP29 存在的情况下,特别是在没有 CP24 的情况下的动力学表明,大量的光捕获复合物与 RC 之间的连接变得很差。有趣的是,断开连接的光捕获复合物的激发态寿命似乎被大大猝灭。

相似文献

1
Effect of antenna-depletion in Photosystem II on excitation energy transfer in Arabidopsis thaliana.
Biophys J. 2010 Mar 3;98(5):922-31. doi: 10.1016/j.bpj.2009.11.012.
2
Disturbed excitation energy transfer in Arabidopsis thaliana mutants lacking minor antenna complexes of photosystem II.
Biochim Biophys Acta. 2014 Dec;1837(12):1981-1988. doi: 10.1016/j.bbabio.2014.09.011.
4
Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):607-19. doi: 10.1016/j.bbabio.2015.03.004. Epub 2015 Apr 3.
5
Excitation energy transfer in Chlamydomonas reinhardtii deficient in the PSI core or the PSII core under conditions mimicking state transitions.
Biochim Biophys Acta. 2016 Jun;1857(6):625-33. doi: 10.1016/j.bbabio.2016.03.002. Epub 2016 Mar 3.
9
Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation.
J Phys Chem B. 2013 Sep 26;117(38):11200-8. doi: 10.1021/jp401663w. Epub 2013 Apr 11.

引用本文的文献

2
Epibrassinolide Regulates Expression Though the Transcription Factor of MYBR17 in Maize.
Biomolecules. 2025 Jan 9;15(1):94. doi: 10.3390/biom15010094.
3
In vivo two-photon FLIM resolves photosynthetic properties of maize bundle sheath cells.
Photosynth Res. 2025 Jan 21;163(1):11. doi: 10.1007/s11120-024-01135-0.
4
Bidirectional Energy Flow in the Photosystem II Supercomplex.
J Phys Chem B. 2024 Aug 22;128(33):7941-7953. doi: 10.1021/acs.jpcb.4c02508. Epub 2024 Aug 14.
5
Non-photochemical quenching of photosystem I as an adaptive response to prolonged drought.
J Exp Bot. 2023 Jan 1;74(1):16-18. doi: 10.1093/jxb/erac438.
8
Perspectives on improving light distribution and light use efficiency in crop canopies.
Plant Physiol. 2021 Feb 25;185(1):34-48. doi: 10.1093/plphys/kiaa006.
9
Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants.
Nat Plants. 2020 Jul;6(7):860-868. doi: 10.1038/s41477-020-0693-4. Epub 2020 Jun 22.
10
Beyond 'seeing is believing': the antenna size of the photosystems in vivo.
New Phytol. 2020 Nov;228(4):1214-1218. doi: 10.1111/nph.16758. Epub 2020 Jul 14.

本文引用的文献

1
Functional architecture of higher plant photosystem II supercomplexes.
EMBO J. 2009 Oct 7;28(19):3052-63. doi: 10.1038/emboj.2009.232. Epub 2009 Aug 20.
3
Picosecond fluorescence of intact and dissolved PSI-LHCI crystals.
Biophys J. 2008 Dec 15;95(12):5851-61. doi: 10.1529/biophysj.108.140467. Epub 2008 Oct 17.
4
Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching.
FEBS Lett. 2008 Oct 29;582(25-26):3625-31. doi: 10.1016/j.febslet.2008.09.044. Epub 2008 Oct 1.
5
An original adaptation of photosynthesis in the marine green alga Ostreococcus.
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7881-6. doi: 10.1073/pnas.0802762105. Epub 2008 May 29.
6
Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.
Science. 2008 May 9;320(5877):794-7. doi: 10.1126/science.1154800.
8
Determination of the excitation migration time in Photosystem II consequences for the membrane organization and charge separation parameters.
Biochim Biophys Acta. 2008 May;1777(5):404-9. doi: 10.1016/j.bbabio.2008.02.003. Epub 2008 Mar 4.
9
Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching.
J Biol Chem. 2008 Mar 7;283(10):6184-92. doi: 10.1074/jbc.M708961200. Epub 2007 Dec 13.
10
Identification of a mechanism of photoprotective energy dissipation in higher plants.
Nature. 2007 Nov 22;450(7169):575-8. doi: 10.1038/nature06262.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验