Suppr超能文献

胰岛素原C肽通过上调视黄酸和肝细胞生长因子相关信号通路来拮抗转化生长因子-β1的促纤维化作用。

Proinsulin C-peptide antagonizes the profibrotic effects of TGF-beta1 via up-regulation of retinoic acid and HGF-related signaling pathways.

作者信息

Hills Claire E, Willars Gary B, Brunskill Nigel J

机构信息

Department of Infection, Immunity and Inflammation, University of Leicester, College of Medicine Biological Sciences and Psychology, Leicester, United Kingdom.

出版信息

Mol Endocrinol. 2010 Apr;24(4):822-31. doi: 10.1210/me.2009-0391. Epub 2010 Mar 2.

Abstract

Novel signaling roles for C-peptide have recently been discovered with evidence that it can ameliorate complications of type 1 diabetes. Here we sought to identify new pathways regulated by C-peptide of relevance to the pathophysiology of diabetic nephropathy. Microarray analysis was performed to identify genes regulated by either C-peptide and/or TGF-beta1 in a human proximal tubular cell line, HK-2. Expression of retinoic acid receptor beta (RARbeta), hepatocyte growth factor (HGF), cellular retinoic acid-binding protein II (CRABPII), vimentin, E-cadherin, Snail, and beta-catenin was assessed by immunoblotting. The cellular localization of vimentin and beta-catenin was determined by immunocytochemistry. Changes in cell morphology were assessed by phase contrast microscopy. Gene expression profiling demonstrated differential expression of 953 and 1458 genes after C-peptide exposure for 18 h or 48 h, respectively. From these, members of the antifibrotic retinoic acid (RA)- and HGF-signaling pathways were selected. Immunoblotting demonstrated that C-peptide increased RARbeta, CRABPII, and HGF. We confirmed a role for RA in reversal of TGF-beta1-induced changes associated with epithelial-mesenchymal transition, including expression changes in Snail, E-cadherin, vimetin, and redistribution of beta-catenin. Importantly, these TGF-beta1-induced changes were inhibited by C-peptide. Further, effects of TGF-beta1 on Snail and E-cadherin expression were blocked by HGF, and inhibitory effects of C-peptide were removed by blockade of HGF activity. This study identifies a novel role for HGF as an effector of C-peptide, possibly via an RA-signaling pathway, highlighting C-peptide as a potential therapy for diabetic nephropathy.

摘要

最近发现了C肽的新信号传导作用,有证据表明它可以改善1型糖尿病的并发症。在此,我们试图确定与糖尿病肾病病理生理学相关的、受C肽调节的新途径。我们进行了微阵列分析,以确定在人近端肾小管细胞系HK-2中受C肽和/或转化生长因子-β1(TGF-β1)调节的基因。通过免疫印迹法评估视黄酸受体β(RARβ)、肝细胞生长因子(HGF)、细胞视黄酸结合蛋白II(CRABPII)、波形蛋白、E-钙黏蛋白、Snail和β-连环蛋白的表达。通过免疫细胞化学确定波形蛋白和β-连环蛋白的细胞定位。通过相差显微镜评估细胞形态的变化。基因表达谱显示,C肽暴露18小时或48小时后,分别有953个和1458个基因差异表达。从这些基因中,选择了抗纤维化视黄酸(RA)和HGF信号通路的成员。免疫印迹表明,C肽增加了RARβ、CRABPII和HGF。我们证实RA在逆转TGF-β1诱导的与上皮-间质转化相关的变化中起作用,包括Snail、E-钙黏蛋白、波形蛋白的表达变化以及β-连环蛋白的重新分布。重要的是,这些TGF-β1诱导的变化被C肽抑制。此外,HGF阻断了TGF-β1对Snail和E-钙黏蛋白表达的影响,而C肽的抑制作用通过阻断HGF活性而消除。本研究确定了HGF作为C肽效应器的新作用,可能是通过RA信号通路,突出了C肽作为糖尿病肾病潜在治疗方法的地位。

相似文献

2
A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition.
J Am Soc Nephrol. 2005 Jan;16(1):68-78. doi: 10.1681/ASN.2003090795. Epub 2004 Nov 10.
3
C-peptide reverses TGF-beta1-induced changes in renal proximal tubular cells: implications for treatment of diabetic nephropathy.
Am J Physiol Renal Physiol. 2009 Mar;296(3):F614-21. doi: 10.1152/ajprenal.90500.2008. Epub 2008 Dec 17.
4
FHL2 promotes tubular epithelial-to-mesenchymal transition through modulating β-catenin signalling.
J Cell Mol Med. 2018 Mar;22(3):1684-1695. doi: 10.1111/jcmm.13446. Epub 2017 Nov 29.
9
Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway.
PLoS One. 2016 Jan 13;11(1):e0147018. doi: 10.1371/journal.pone.0147018. eCollection 2016.
10
Hepatocyte growth factor attenuates transforming growth factor-β-angiotensin II crosstalk through inhibition of the PTEN/Akt pathway.
Hypertension. 2011 Aug;58(2):190-6. doi: 10.1161/HYPERTENSIONAHA.111.173013. Epub 2011 Jun 13.

引用本文的文献

2
Key genes of renal tubular necrosis: a bioinformatics analysis.
Transl Androl Urol. 2020 Apr;9(2):654-664. doi: 10.21037/tau.2019.11.24.
5
Bioinformatic Evaluation of Transcriptional Regulation of WNT Pathway Genes with reference to Diabetic Nephropathy.
J Diabetes Res. 2016;2016:7684038. doi: 10.1155/2016/7684038. Epub 2015 Nov 30.
6
The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney.
PLoS Genet. 2015 Dec 17;11(12):e1005734. doi: 10.1371/journal.pgen.1005734. eCollection 2015 Dec.
7
Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis.
Nat Med. 2015 Sep;21(9):998-1009. doi: 10.1038/nm.3902. Epub 2015 Aug 3.
8
The roles of TGFβ in the tumour microenvironment.
Nat Rev Cancer. 2013 Nov;13(11):788-99. doi: 10.1038/nrc3603. Epub 2013 Oct 17.
10
Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression.
PLoS One. 2012;7(12):e51136. doi: 10.1371/journal.pone.0051136. Epub 2012 Dec 10.

本文引用的文献

1
Soluble c-Met receptors inhibit phosphorylation of c-Met and growth of hepatocyte growth factor: c-Met-dependent tumors in animal models.
Mol Cancer Ther. 2009 May;8(5):1119-25. doi: 10.1158/1535-7163.MCT-08-1032. Epub 2009 May 12.
2
Executive summary: standards of medical care in diabetes--2009.
Diabetes Care. 2009 Jan;32 Suppl 1(Suppl 1):S6-12. doi: 10.2337/dc09-S006.
3
C-peptide reverses TGF-beta1-induced changes in renal proximal tubular cells: implications for treatment of diabetic nephropathy.
Am J Physiol Renal Physiol. 2009 Mar;296(3):F614-21. doi: 10.1152/ajprenal.90500.2008. Epub 2008 Dec 17.
4
C-Peptide effects on renal physiology and diabetes.
Exp Diabetes Res. 2008;2008:281536. doi: 10.1155/2008/281536.
5
Intracellular signalling by C-peptide.
Exp Diabetes Res. 2008;2008:635158. doi: 10.1155/2008/635158.
6
Effect of C-peptide on diabetic neuropathy in patients with type 1 diabetes.
Exp Diabetes Res. 2008;2008:457912. doi: 10.1155/2008/457912.
7
Diabetic nephropathy: mechanisms of renal disease progression.
Exp Biol Med (Maywood). 2008 Jan;233(1):4-11. doi: 10.3181/0705-MR-134.
9
C-Peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy.
Diabetes Care. 2007 Jan;30(1):71-6. doi: 10.2337/dc06-1274.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验