Barlian A Alvin, Park Woo-Tae, Mallon Joseph R, Rastegar Ali J, Pruitt Beth L
Stanford University, Mechanical Engineering, Stanford, CA 94305 USA.
Proc IEEE Inst Electr Electron Eng. 2009;97(3):513-552. doi: 10.1109/JPROC.2009.2013612.
Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.
压阻式传感器是最早的微机械硅器件之一。对更小、更便宜、更高性能传感器的需求推动了早期微加工技术的发展,而微加工技术是微系统或微机电系统(MEMS)的前身。自1954年贝尔实验室的史密斯开展相关工作以来,人们就已经知道应力对掺杂硅和锗的影响。从那时起,研究人员广泛报道了微尺度的压阻应变计、压力传感器、加速度计和悬臂力/位移传感器,包括许多商业上成功的器件。在本文中,我们回顾了压阻的历史、其物理原理以及相关的制造技术。我们还讨论了压阻器中的电噪声、器件示例和设计考虑因素以及替代材料。本文全面概述了集成压阻器技术,介绍了压阻物理、工艺和材料选择,并为研究人员和器件工程师提供了有用的设计指导。