Cui Xu, Zhang Wei, Lv Menghui, Huang Tianci, Xi Jianguo, Yuan Zuqing
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
Materials (Basel). 2025 Aug 27;18(17):4010. doi: 10.3390/ma18174010.
Rapid developments in intelligent interfaces across service, healthcare, and industry have led to unprecedented demands for advanced tactile perception systems. Traditional tactile sensors often struggle with adaptability on curved surfaces and lack sufficient feedback for delicate interactions. Flexible and wearable tactile sensors are emerging as a revolutionary solution, driven by innovations in flexible electronics and micro-engineered materials. This paper reviews recent advancements in flexible tactile sensors, focusing on their mechanisms, multifunctional performance and applications in health monitoring, human-machine interactions, and robotics. The first section outlines the primary transduction mechanisms of piezoresistive (resistance changes), capacitive (capacitance changes), piezoelectric (piezoelectric effect), and triboelectric (contact electrification) sensors while examining material selection strategies for performance optimization. Next, we explore the structural design of multifunctional flexible tactile sensors and highlight potential applications in motion detection and wearable systems. Finally, a detailed discussion covers specific applications of these sensors in health monitoring, human-machine interactions, and robotics. This review examines their promising prospects across various fields, including medical care, virtual reality, precision agriculture, and ocean monitoring.
服务、医疗保健和工业领域智能接口的快速发展,引发了对先进触觉感知系统前所未有的需求。传统触觉传感器在曲面上的适应性往往较差,且缺乏用于精细交互的充分反馈。在柔性电子和微工程材料创新的推动下,柔性可穿戴触觉传感器正成为一种革命性的解决方案。本文综述了柔性触觉传感器的最新进展,重点介绍了其工作机制、多功能性能以及在健康监测、人机交互和机器人技术中的应用。第一部分概述了压阻式(电阻变化)、电容式(电容变化)、压电式(压电效应)和摩擦电式(接触起电)传感器的主要转换机制,同时研究了用于性能优化的材料选择策略。接下来,我们探讨了多功能柔性触觉传感器的结构设计,并突出其在运动检测和可穿戴系统中的潜在应用。最后,详细讨论涵盖了这些传感器在健康监测、人机交互和机器人技术中的具体应用。本综述考察了它们在包括医疗保健、虚拟现实、精准农业和海洋监测在内的各个领域的广阔前景。